309 resultados para 6-DIONE
Resumo:
Reactive compatibilization of ethylene-propylene copolymer functionalized with allyl (3-isocyanato-4-tolyl) carbamate (TAI) isocyanate (EPM-g-TAI) and polyamide 6 (PA6) was investigated in this paper, FTIR analysis revealed the evidence of a chemical reaction between the end groups of PA6 and EPM-g-TAI. Thermal, rheological, morphological, and mechanical properties of the resultant system were examined, DSC analysis indicated that the crystallization of PA6 in Pa6/EPM-g-TAI blends was inhibited, due to the chemical reaction that occurs at the interface of PA6 and EPM-g-TAI. Rheological measurement showed that complex viscosity and storage modulus of PA6/EPM-g-TAI were both dramatically enhanced compared to those of PA6/EPM at the same blending composition. After examining the morphology of both blending systems, smaller particile sizes, more homogeneous distribution of domains and improved interfacial adhesion between matrix and domains were observed in the compatibilized system. Mechanical properties such as tensile strength. Young's modulus, flexural strength and modulus, as well as notched and un-notched impact strength of PA6/EPM-g-TAI blends were also found to improve gradually with increasing the content of grafted TAI.
Resumo:
A new compound [H(2)en](2)[H3O](6)[Co(H2O)(2)(VO)(8)(OH)(4)(PO4)(8)] has been hydrothermally synthesized. Single crystal X-ray analysis indicates that this compound crystallizes in a monoclinic system, space group P2(1)/n with a=1.438 5(3) nm, b=1.012 2(2) nm, c=1.832 5(4) nm, beta=90.21degrees, V=2.668 2 (9) nm(3), Z = 2, D-c = 2.112 g/cm(3), R = 0.055, wR = 0.149 7, S = 1.037. The structure of [H(2)en](2)[H3O](6)[Co(H2O)(2)(VO)(8)(OH)(4)(PO4)(8)] is characterized by P-V-O layers constructed by [(VO)4 (OH)(2)(PO4)(4)](6-) non-symmetric units. The P-V-O layers are pillared by [Co(H2O)(2)](2+) group, resulting in the channels within which the protonated diaminoethane and H3O+ are located.
Resumo:
Facilitated alkali metal ion (M+= Li+, Na+, K+, Rb+, and Cs+) transfers across the micro- and nano-water/1,2-dichloroethane (W/DCE) interfaces supported at the tips of micro- and nanopipets by dibenzo-18-crown-6 (DB18C6) have been investigated systematically using cyclic voltammetry. The theory developed by Matsuda et al. was applied to estimate the association constants of DB18C6 and M+ in the DCE phase based on the experimental voltammetric results. The kinetic measurements for alkali metal ion transfer across the W/DCE interface facilitated by DB18C6 were conducted using nanopipets or-submicropipets, and the standard rate constants (k(0)) were evaluated by analysis of the experimental voltammetric data. They increase in the following order: k(Cs+)(0) < k(Li+)(0) < k(Rb+)(0) < k(Na+)(0) < k(K+)(0), which is in accordance with their association constants except Cs+ and Li+.
Resumo:
A novel manganese phosphomolybdate, [H3N(CH2)(4)NH3](H3O)(2){[Mn(phen)(2)](4)[(MnMovO30)-O-12(HPO4)(6)(H2PO4)(2)]} . 4H(2)O 1, has been hydrothermally synthesized and structurally characterized by single crystal X-ray diffraction. The crystal data: triclinic, P (1) over bar, a = 14.172(7) Angstrom, b = 16.547(2) Angstrom, c = 16.679(3) Angstrom, alpha = 62.881(12)degrees, beta = 73.83(3)degrees, gamma = 88.81(3)degrees. X-ray crystallography shows that the [Mn(phen)(2)] fragments are covalently bonded to the [Mn(Mo6P4)(2)] dimers leading to a one-dimensional chain with rectangular cavities occupied by tetramethylene-diamine cations and water molecules. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Two novel dibenzo-18-crown-6 sodium isopolytungstates, [(DB18C6)(CH3OH)Na](2)W(6)O(19)(.)DB18C6(.)H(2)O 1 and [(DB18C6)(DMF)(2)Na](4)W(10)O(32)(.)2DMF(.)2H(2)O 2, have been synthesized in mixed methanol and acetonitrile solvents and characterized by elemental analysis, TGA, IR and single crystal X-ray diffraction. The compound 1 crystallizes in the monoclinic space group C2/c with a = 23.182(8), b = 19.527(2), c = 18.737(3) Angstrom, beta = 115.15(2)degrees, V = 7678(3) Angstrom(3), Z = 4, and R1(wR2) = 0.0611(0.1504). The compound 2 crystallizes in the monoclinic space group P21/n with a = 16.516(2), b = 22.325(6), c = 20.425(7) Angstrom, beta = 91.78(2)degrees, V = 7528(3) Angstrom(3), Z = 2, and R1(wR2) = 0.0397(0.0773). The compound 1 exhibits a novel organic-inorganic sandwich-type structure, in which the crown ether-sodium complexes are coordinated to the terminal oxygen atoms of W6O192-. In compound 2, all Na+ ions are thoroughly enveloped into the organic moieties of crown ether and DMF molecules and are connected with the 'naked' polyanions W10O324- via the electrostatic attraction.
Resumo:
The triplet energy state of the HTH [HTH: 4,4,5,5,6,6,6-heptafluoro-1-(2-thienyl) hexane-1,3-dione] ligand was measured to be 20 400 cm(-1), which indicated that Sm(HTH)(3) phen (phen: 1,10-phenanthroline) is a good complex to produce strong PL intensity and high fluorescence yield. Electroluminescent (EL) devices using the Sm( HTH) 3 phen complex as the emissive center were fabricated by vapor deposition and spin-coating methods. The relative intensity of the EL spectra changed compared to the photoluminescence (PL) spectrum, which suggested that the luminescence mechanisms of PL and EL have differences. A luminance of 9 cd m(-2) and a higher brightness of 21 cd m(-2) were obtained from the devices ITO/TPD (40 nm)/ Sm( HTH)(3) phen (50 nm)/ PBD (30 nm)/ Al (200 nm) and ITO/PVK (40 nm)/ PVK : Sm( HTH)(3) phen (2.5 wt%, 50 nm)/ PBD (30 nm)/ Al (200 nm), respectively.
Resumo:
Rare-earth and lead ions (Eu3+, Tb3+, Dy3+, Pb2+) doped Ca2Y8 (SiO4)(6)O-2 and Ca2Gd8(SiO4)(6)O-2 thin films have been dip- coated on silicon and quartz glass substrates through the sol- gel route. X- Ray diffraction (XRD), TG- DTA, scanning electron microscopy (SEM), atomic force microscopy (AFM), FT- IR and luminescence excitation and emission spectra as well as luminescence decays were used to characterize the resulting films. The results of XRD reveal that these films remain amorphous below 700 degreesC, begin to crystallize at 800 degreesC and crystallize completely around 1000 degreesC with an oxyapatite structure. The grain structure of the film can be seen clearly from SEM and AFM micrographs, where particles with various shapes and average size of 250 nm can be resolved. Eu3+ and Tb3+ show their characteristic red (D-5(0)-F-7(2)) and green (D-5(4) - F-7(5)) emission in the films with a quenching concentration of 10 and 6 mol% (of Y3+), respectively. The lifetime and emission intensity of Eu3+ increase with the temperature treatment from 700 to 1100 degreesC, while those of Tb3+ show a maximum at 800 degreesC. Energy transfer phenomena have been observed by activating the oxyapatite film host- lattice Ca2Gd8(SiO4)(6)O-2 with Tb3+ (Dy3+). In addition, Pb2+ can sensitize the Gd3+ sublattice in Ca2Gd8(SiO4)(6)O-2.
Resumo:
3,3'-Dioxo-1.1'(3H.3'H)spirobi[isobenzofuran]-5,6,5',6 acid 1 was resolved successfully and the corresponding optically active polyimides PI were synthesized. The properties of the optically active PI and the racemic one were investigated. The results showed that the specific rotation of(-)-PI was about two times to that of the: (+)-PI, and the regularity of the optically active PI was higher than that of the racemic one.
Resumo:
Crystal and molecular structure of (2.6-dipropylphenylamide) dimethyl (tetra-methyl cyclopentadienyl) silane titanium dichloride (I) was fully characterized by X-ray diffraction. The crystal is obtained from a mixture of ether/hexane as orthorhombic. with a = 12.658 (3) Angstrom. b = 16.62 (3) Angstrom. c = 11.760 (2) Angstrom. V = 2474.2 (9) Angstrom(3). Z = 4, space group Pnma. R = 0.0399; Componud I compose of the pi-bounded ring with its dimethylsilyl-dipropyl phenyl amido group and the two terminal chloride atoms coordinated to central metal to form a so-called constrained geometry catalyst (CGC) structure. The result of molecular mechanics (MM) calculations on compound I shows that bond lengths and bond angles from the MM calculation are comparable to the data obtained from the X-ray diffraction study. The relation of the structure of CGCs and their catalytic activity by MM calculations is also discussed.
Resumo:
The title compound, [C12H24O6][H3PMo12O40]. 22H(2)O, was synthesized by the self-assembly of 18-crown-6 (abbreviated as C12H24O6 or 18C6) and H3PMo12O40 in the mixed solvent of CH3OH and CH3CN, and was characterized by IR, H-1 NMR and Xray diffraction for the first time. Crystal data: Triclinic, P (1) over bar, a = 13.428(3) Angstrom, b = 13.557(3)A, c = 14.642(3) Angstrom, a = 105.39(3)degrees, beta = 90.06(3)degrees, gamma = 119.56(5)degrees, V = 2207.5(8) Angstrom(3), Z = 1, R1 = 0.0719, wR2 = 0.1990. It has a disordered alpha-Keggin PMo12O403- anion, which contains the strong alternating short (mean 1.844 Angstrom) and long (mean 1.958 Angstrom) Mo-O-Mo bonds. In the unit cell, crown ethers and molybdophosphates are alternatively arranged in good order along c-axis. An oxonium ion is located at the center of a crown ether molecule., Oxonium ion interacts with 18C6 by the means of hydrogen bonds (mean 2.7771 Angstrom), which are electrostatic or resonant. The observations show the existence of [H3O(C12H24O6)](+) (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
A novel compound was synthesized and characterized by means of elemental analysis, IR and UV spectra, TG, CV and single crystal X-ray diffraction. The compound crystallized in an orthorhombic space group C222 with a=1. 622 4(3) nm, b=3. 498 4(7) nm, c=1. 301 5(3) nm, V=7. 387 (3) nm(3), Z=6, R-1= 0. 037 3, wR(2)=0. 114 0. The Ala (Ala = alanine) molecules were protonated at the amino nitrogen N (1) and the C (2) of Ala group with the terminal oxygen atom O(15), O(14), O(26) and O(27) of the polyoxometalates participating in the hydrogen bond network. The anti-tumor activity of the title compound was estimated against Hela and Pc-3m cancer cells.
Resumo:
A four-level decay model in KMgF3:Eu2+ is proposed. The decay profiles of the P-6(7/2) excited state of Eu2+ are biexponential, and the physical implication of each term in the fit equation responsible for the model is interpreted. The evidence obtained spectroscopically for supporting the model is presented. A new method to study energy transfer between Eu2+ and X3+ in KMgF3:Eu-X (X = Gd, Ce, Cr) is established on the basis of the proposed model.
Resumo:
The half-sandwich tert-butyl cyclopentadienyl lanthanoid complexes {[Cp ' Ln(THF)](2)(mu (2)-Cl)(2)(mu (3)-Cl)(3)Na(THF)}(n) [Cp ' = eta (5)-' BuC5H4; Ln = Nd (1a), Sm (1b), Gd (1c), Yb (1d)] are prepared by the reaction of anhydrous lanthanoid trichloride, LnCl(3), with NaCp ' in THF solution. Complex 1b reacts with Na2Se5 to give hexanuclear samarium polyselenide complexes [Na(THF)(6)](2)[Cp-6' SM6(mu (6)-Se)(mu -Se-2)(6)] (2). An analogous cyclopentadienyl neodymium polyselenide complex [Li(THF)(4)](2)[Cp6Nd6(mu (6)-Se)(mu -Se-2)(6)] (3) is synthesized by the reaction of [CpNdCl2. 2LiCl . 5THF] with Na2Se5 in THF solution. The molecular structures of 1a and 2 were determined by X-ray crystal structure analysis. Complex 2 contains an interstitial selenium atom which is coordinated with six samarium atoms. (C) 2001 Elsevier Science BN. All rights reserved.
Resumo:
Reaction of NdCl3, with AlCl3 and mesitylene in benzene gives complex [Nd(eta (6)-1,3,5-C6H3Me3) (AlCl4)(3)] (C6H6) (1) which was characterized by elemental analysis, IR spectra, MS and X-lay diffractions. The X-ray determination indicates that 1 has a distorted pentagonal bipyramidal geometry and crystallizes in the monoclinic, space group P2(1)/n with a = 0.9586(2), b = 1.1717(5), c = 2.8966(7) nm, beta = 90.85 (2)degrees, V = 3.2529(6) nm(3), D-c = 1.573 g/cm(3), Z = 4. A comparison of bond parameters for all the reported Ln(eta (6)-Ar) (AlCl4)(3) complexes indicates that the bond distance of Ln-C is shortened with the increasing of methyl group on benzene and with the decreasing of radius of lanthanide ions.
Resumo:
In this paper, blends of Nylon 6,6 with the liquid crystal polymer Vectra A950 are considered; specifically we focused our attention on Nylon 6,6 modifications by interchange reactions that can occur in the melt, as a function of mixing conditions and blend compositions. Two matrix samples have been used, characterised by a slightly different relative amount of amine and carboxylic end groups, being the latter predominant in both cases. The dried polymers Nylon 6,6/Vectra, combined in weight ratios between 95/5 and 50/50, were subjected to reactive blending with different methods (single-screw extruder, Brabender, pyrex reactor). Pure Nylon samples have been also investigated as reference materials. The soluble Nylon 6,6-rich fraction of each blend was separated from the insoluble Vectra-rich one and used for molecular and spectroscopic characterisations. Thermal and morphological analyses, as well as testing of tensile properties, were carried out on the blends. Evidences of the occurrence of interchange reactions are given and the most probable ones are suggested. (C) 2001 Elsevier Science Ltd. All rights reserved.