301 resultados para quadrupolar nuclei
Resumo:
Concise methods are proposed to study proton radioactivity. The spectroscopic factor is obtained from relativistic mean field (RMF) theory combined with the BCS method (RMF+BCS). The assault frequency is estimated by a quantum mechanical method considering the structure of the parent nucleus. The penetrability is calculated by the WKB approximation. No additional parameters are introduced. The extracted experimental spectroscopic factors are compared with those from the calculations by the RMF+BCS, and the agreement is good, implying that the present methods work quite well for proton radioactivity. Predictions are provided for some most possible proton emissions, which may be useful for future experiments.
Resumo:
Differential cross sections for the elastic scattering of halo nucleus He-6 on proton target were measured at 82.3 MeV/u. The experimental results are well reproduced by optical model calculations using global potential KD02 with a reduction of the depth of real volume part by a factor of 0.7. A systematic analysis shows that this behavior might be related to the weakly bound property of unstable nuclei.
Resumo:
Properties for the ground state of C-9 are studied in the relativistic continuum Hartree-Bogoliubov theory with the NLSH, NLLN and TM2 effective interactions. Pairing correlations are taken into account by a density-dependent delta-force with the pairing strength for protons determined by fitting either to the experimental binding energy or to the odd-even mass difference from the five-point formula. The effects of pairing correlations on the formation of proton halo in the ground state of C-9 are examined. The halo structure is shown to be formed by the partially occupied valence proton levels p(3/2) and p(1/2).
Resumo:
The properties of the Z = 117 isotopic chain are studied within the framework of the axially deformed relativistic mean field theory (RMFT) in the blocked BCS approximation. The ground-state properties, such as binging energies, deformations as well as the possible.. decay energies and lifetimes are calculated with the parameter set of NL-Z2 and compared with results from the finite range droplet model. The analysis by RMFT shows that the isotopes in the range of mass number A = 291 similar to 300 exhibit higher stability, which suggests that they may be promising nuclei to be hopefully synthesized in the lab among the nuclei Z = 117.
Resumo:
The neutron deficient nuclide Ir-175 was produced by irradiation of Nd-146 with 210 MeV Cl-35 via a fusion-evaporation reaction channel. The reaction products were transported to a low-background location using a helium-jet recoil fast-moving tape-transport system for measurement. The experimental devices and data analysis method are introduced. Based on the decay-curve fitting of the beta-delayed gamma ray from Ir-175, realized by the least-square method, a new long-lived isomeric state of Ir-175 is proposed and briefly discussed.
Resumo:
The fully consistent relativistic continuum random phase approximation (RCRPA) has been constructed in the momentum representation in the first part of this paper. In this part we describe the numerical details for solving the Bethe-Salpeter equation. The numerical results are checked by the inverse energy weighted sum rules in the isoscalar giant monopole resonance, which are obtained from the constraint relativistic mean field theory and also calculated with the integration of the RCRPA strengths. Good agreement between the misachieved. We study the effects of the self-consistency violation, particularly the currents and Coulomb interaction to various collective multipole excitations. Using the fully consistent RCRPA method, we investigate the properties of isoscalar and isovector collective multipole excitations for some stable and exotic from light to heavy nuclei. The properties of the resonances, such as the centroid energies and strength distributions are compared with the experimental data as well as with results calculated in other models.
Resumo:
A fully consistent relativistic continuum random phase approximation (RCRPA) is constructed in terms of the Green's function technique. In this method the contribution of the continuum spectrum to nuclear excitations is treated exactly by the single particle Green's function, which includes also the negative states in the Dirac sea in the nose aapproximation. The theoretical formalism of RCRPA and numerical details are presented. The single particle Green's function is calculated numerically by a proper product of regular and irregular solutions of the Dirac equation. The numerical details and the formalism of RCRPA in the momentum representation are presented.
Resumo:
The Coulomb dissociation of the proton-rich nuclei Cl-31 was studied experimentally using Cl-31 beams at 58 MeV/nucleon with a lead target. The relative energy between the reaction products, S-30 and proton, was obtained. The first excited state in Cl-31 was observed which is relevant to the resonant capture of stellar S-30(p, gamma)Cl-31 reaction
Resumo:
An experiment of Mg-22 and Ne-20 beams bombarding on a C-12 target at an energy of 60 similar to 70 A MeV has been performed at the RIKEN projectile fragment separator (RIPS)in the RIKEN Ring Cyclotron Facility to study the two-proton correlated emission from Mg-22 and Ne-20 excited states. The two-protons momentum correlation functions have been obtained for Mg-22 and Ne-20, respectively. The trajectories of the Mg-22 decayed products (Ne-20 + p + p) were also measured to get the angular correlations between the two protons in Center of Mass of decaying system by relativistic-kinematics reconstruction. The results exhibit that Mg-22 has the features of He-2 cluster decay mechanism.
Resumo:
Using a transport model coupled with a phase-space coalescence after-burner we study the triton-He-3 relative and differential transverse flows in semi-central Sn-132 + Sn-124 reactions at a beam energy of 400 MeV/nucleon. We find that the triton-He-3 pairs carry interesting information about the density dependence of the nuclear symmetry energy. The t-He-3 relative flow can be used as a particularly powerful probe of the high-density behavior of the nuclear symmetry energy.
Resumo:
Collisions involving Sn-112 and Sn-124 nuclei have been calculated with the ImQMD transport model in order to place constraints on the density dependences of the nuclear symmetry energy. Consistent constraints on the symmetry energy at sub-saturation density have been obtained by comparing these transport calculations to measurements of isospin diffusion and to the ratios of neutron and proton spectra. New isospin diffusion results from E/A = 35 MeV are also presented.
Resumo:
利用能量为164-180MeV的35Cl束流,通过重离子核反应149Sm(35Cl,5n) 研究了179Au的高自旋态能级结构。实验进行了γ射线的激发函数、X-γ和γ-γ-t符合测量。基于实验测量结果,首次建立了179Au的1/2[660](πi13/2)转动带。结合已有的实验数据,着重讨论了奇-A Au核中1/2[660](πi13/2) 转动带的形变和带头激发能随中子数的变化。用能量为140MeV的29Si束流轰击159Tb金属靶,布居了183Au核的高自旋态。实验中要求至少有3个高纯锗和2个BGO探测器同时点火,在此符合条件下,记录高纯锗探测器探测到的γ射线的能量和相对时间、BGO探测到的γ射线的总能量和多重性。通过对实验数据的分析,扩展并更新了183Au的能级纲图。首次建立了183Au的πi13/2转动带的能量非优先带。分析并讨论了缺中子奇-A Au中πh9/2转动带的能量非优先带和πf7/2转动带间的相互作用
Resumo:
本论文介绍了原子核高自旋态研究的一般概况及有关核模型,描述了在束γ谱实验的原理与技术、数据分析与处理方法,然后着重分析和讨论了双奇核190Tl和146Tb高自旋能级结构的特性。 利用能量为175和167MeV的35Cl束流,通过反应160Gd(35Cl,5n)研究了双奇形变核190Tl的高自旋能级结构。实验进行了γ射线的激发函数和各向异度、X-γ和γ-γ-t符合测量,建立了由πh9/2νi13/2扁椭球转动带和一个具有单粒子激发特征的级联组成的190Tl能级纲图。确定地指定了190Tl的转动带自旋值,首次发现了190Tl πh9/2νi13/2扁椭球转动带的低自旋旋称反转。基于双奇核Tl能级结构的相似性,重新指定了双奇核192-200Tl πh9/2νi13/2扁椭球转动带能级自旋值,澄清了二十多年来国际上一直没有解决的自旋值指定问题且在这些扁椭形变核中均出现了低自旋旋称反转。考虑了p-n剩余相互作用的2-准粒子—转子模型定性地解释πh9/2νi13/2扁椭球转动带出现的低自旋旋称反转现象。 利用118Sn(32S ,1p3n)反应研究了双奇球形核146Tb的高自旋态,建立了激发能达8.39 MeV的能级纲图,其中包括新发现的41条γ射线和新建立的27个能级,并指定了新发现能级的自旋值和部分能级的组态。146Tb81的低位激发态是二准粒子态,高位的激发态是四准粒子态,或二准粒子与偶偶核芯低位激发态的耦合,更高位的能级则是六准粒子态,甚至八准粒子态。利用经验壳模型对部分全顺排组态的激发能进行了理论计算
Resumo:
用双核模型研究超重核的合成机制,最主要的部分是由双核系统演化到复合核的熔合机制研究。双核模型认为超重复合核的形成是由弹核的核子全部转移到靶核所致。核子分中子和质子,在以前的研究中,描述熔合过程的主方程是一维的,以类弹核的质量数 为变量,与此对应的驱动势也是一维的。对确定的 ,其同位旋的确定是由较低的势能面确定的,这样确定的同位旋与反应系统的同位旋很接近。但是我们的研究发现,对入射道同位旋与复合系统同位旋相差较大的情况,入射道在双核系统势能面比较高的位置,有时甚至在最高位置,这时核子转移的同位旋路径比较复杂,以致一维主方程的描述给出错误的结果。为此,建立了以类弹碎片中子数 和质子数 为变量的二维主方程,并建立了二维主方程的分步差分的解法,完成了解二维主方程的程序编写。并对一些典型的弹核、靶核同位旋与复合系统同位旋相差较大的系统进行了研究。对这些反应道的研究表明,无论1D主方程对这些反应道的蒸发剩余截面的研究给出了过高、或过低的估计,2D主方程都能给出与实验值一致地结果。二维主方程适用于所有的弹靶组合入射道。对确定的超重核目标,可以较准确的对各种弹靶组合的合成几率给出预言,特别是研究合成超重核的同位素依赖性,因而极大增加了预言合成预期超重岛区域超重核的弹靶组合的选择性。本工作还检验了一维主方程的适用条件:入射点必须在比较接近二维驱动势谷底时才适用,这时一维主方程预言的蒸发剩余截面的结果与二维主方程的结果很接近
Resumo:
本文详细调研了超铀核研究的发展过程,总结了超铀区核素产生方法、传输方法以及分离方法。结合我国的实际,利用中国科学院高能物理研究所的质子直线加速器的质子束,轰击稀有放射性靶,通过(p,4n)反应道合成和研究了超铀区新核素~(235)Am,巧妙地利用X射线对核素进行了指定,得到了它的半衰期及合成截面,实验中没有观测到伴随~(235)Am的β~+(EC)衰变的γ跃迁,该方法发表后即被日本的实验小组采用;同时利用中国科学院近代物理研究所的SFC加速器提供的~(20)Ne束流轰击~(233)U靶,测量反应产物的α衰变,第一次观测到~(250)102的α衰变,由此得到了~(250)102的半衰期,它不同于~(250)102已知的半衰期;在实验中还观测到一个能量为17.6MeV的衰变。实验采用氦喷嘴传输技术对反应产物进行传输,并根据产物的不同衰变采用了不同的测量方法,对~(235)Am由于其半衰期长,采用了化学分离的分离方法并测量X、γ及其符合测量,而对~(250)102等采用直接测量其α衰变,利用衰变关系进行鉴别的方法。通过对实验的总结分析了利用现有条件研究更重核素的可能。