255 resultados para metalorganic chemical deposition


Relevância:

40.00% 40.00%

Publicador:

Resumo:

A novel method was developed to prepare the highly active Pt-Ru-P/C catalyst. The deposition of phosphorus significantly increased electrochemical active surface (EAS) area of catalyst by reduces Pt-Ru particle size. TEM images show that Pt-Ru-P nanoparticles have an uniform size distribution with an average diameter of 2 nm. Cyclic voltammetry (CV), Chronoamperometry (CA), and CO stripping indicate that the presence of non-metal phosphorus as an interstitial species Pt-Ru-P/C catalyst shows high activity for the electro-oxidation of methanol, and exhibit enhanced performance in the oxidation of carbon monoxide compared with Pt-Ru/C catalyst. At 30 degrees C and pure oxygen was fed to the cathode, the maximum power density of direct methanol fuel cell (DMFC) with Pt-Ru-P/C and Pt-Ru/C catalysts as anode catalysts was 61.5 mW cm(-2) and 36.6 mW cm(-2), respectively. All experimental results indicate that Pt-Ru-P/C catalyst was the optimum anode catalyst for direct methanol fuel cell.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Ordered mesoporous carbons composed of arrays of nanotubes have been synthesized using ordered mesoporous silica templates via catalytic chemical vapor deposition. The ordered carbons possess bimodal pores, namely, the pores arise from the "replica" of frameworks of the template and the pores correspond to carbon nanotubes formed in the channels of the template (see Figure).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A novel approach for attaching well-dispersed cobalt nanoparticles homogeneously onto carbon nanotubes via metal organic chemical vapor deposition technique is reported. The obtained Co/CNTs catalysts feature a narrow size distribution of Co particles centering around 7.5 nm, and show high activity and regioselectivity for hydroformylation of 1-octene.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ZnO nanoflowers are synthesized on AIN films by solution method. The synthesized nanoflowers are composed of nanorods, which are pyramidal and grow from a central point, thus forming structures that are flower-shaped as a whole. The nanoflowers have two typical morphologies: plate-like and bush-like. The XRD spectrum corresponds to the side planes of the ZnO nanorods made up of the nanoflowers. The micro-Raman spectrum of the ZnO nanoflowers exhibits the E-2 (high) mode and the second order multiple-phonon mode. The photoluminescence spectrum of the ZnO nanoflowers exhibits ultraviolet emission centred at 375 nm and a broad green emission centred at 526 nm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mechanical properties and fracture behavior of silicon nitride (SiNx) thin film fabricated by plasma-enhanced chemical vapor deposition is reported. Plane-strain moduli, prestresses, and fracture strengths of silicon nitride thin film; deposited both oil a bare Si substrate and oil a thermally oxidized Si substrate were extracted using bulge testing combined with a refined load-deflection model of long rectangular membranes. The plane-strain modu i and prestresses of SiNx thin films have little dependence on the substrates, that is, for the bare Si substrate, they are 133 +/- 19 GPa and 178 +/- 22 MPa, respectively, while for the thermally oxidized substrate, they are 140 +/- 26 Gila and 194 +/- 34 MPa, respectively. However, the fracture strength values of SiNx films grown on the two substrates are quite different, i.e., 1.53 +/- 0.33 Gila and 3.08 +/- 0.79 GPa for the bare Si substrate a A the oxidized Si substrate, respectively. The reference stresses were computed by integrating the local stress of the membrane at the fracture over the edge, Surface, and volume of the specimens and fitted with the Weibull distribution function. For SiNx thin film produced oil the bare Si Substrate, the Volume integration gave a significantly better agreement between data and model, implying that the volume flaws re the dominant fracture origin. For SiNx thin film grown on the oxidized Si substrate, the fit quality of surface and edge integration was significantly better than the Volume integration, and the dominant surface and edge flaws could be caused by buffered HF attacking the SiNx layer during SiO2 removal. Crown Copyright (C) 2008 Published by Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report the growth of hexagonal ZnO nanorods and nanoflowers on GaN-based LED epiwafer using a solution deposition method. We also discuss the mechanisms of epitaxial nucleation and of the growth of ZnO nanorods and nanoflowers. A GaN-based LED epiwafer was first deposited on a sapphire substrate by MOCVD with no electrode being fabricated on it. Vertically aligned ZnO nanorods with an average height of similar to 2.4 mu m were then grown on the LED epiwafer, and nanoflowers were synthesized on the nanorods. The growth orientation of the nanorods was perpendicular to the surface, and the synthesized nanoflowers were composed of nanorods. The micro-Raman spectra of the ZnO nanorods and nanoflowers are similar and both exhibit the E-2 (high) mode and the second-order multiple-phonon mode. The photoluminescence spectrum of ZnO nanostructures exhibits ultraviolet emission centred at about 380 nm and a broad and enhanced green emission centred at about 526 nm. The green emission of the ZnO nanostructures combined with the emission of InGaN quantum wells provides a valuable method to improve the colour rendering index (CRI) of LEDs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Selective area growth (SAG) of GaN on SiO2 stripe-patterned GaN/GaAs(001) substrates was carried out by metalorganic vapor-phase epitaxy. The SAG samples were investigated by using X-ray diffraction (XRD) and scanning electron microscopy (SEM). SEM observations showed that the morphology of SAG GaN is strongly dependent on the window stripe orientation and slightly affected by the orientation relationship between the window stripes and the gas flow. The (I 1 1)B sidewalls formed on the SAG GaN stripes are found to be stable. XRD measurements indicated the full-widths at half-maximum (FWHMs) of cubic GaN (0 0 2) rocking curves are reduced after SAG. The measured FWHMs with omega-axis parallel to [1(1) over bar 0] are always larger than the FWHM values obtained with omega-axis parallel to [I 10], regardless of the orientation relationship between the w-axis and the GaN stripes. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Epitaxial lateral overgrown (ELO) cubic GaN (c-GaN) on SiO2 patterned GaN/GaAs(0 0 1) substrates by metalorganic vapor phase epitaxy was investigated using transmission electron microscopy and X-ray diffraction (XRD) measurements. The density of stacking faults (SFs) in ELO c-GaN was similar to6 x 10(8) cm(-2), while that in underlying GaN template was similar to5 x 10(9) cm(-2). XRD measurements showed that the full-width at half-maximum of c-GaN (0 0 2) rocking curve decreased from 33 to 17.8 arcmin, indicating the improved crystalline quality of ELO c-GaN. The mechanism of SF reduction in ELO c-GaN was also discussed. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A quasi-thermodynamic model of metalorganic vapor phase epitaxy (MOVPE) growth of GaxAlyIn1-x-yN alloys has been proposed. In view of the complex growth behavior of GaxAlyIn1-x-yN, we focus our attention on the galliumrich quaternary alloys that are lattice matched to GaN, In0.15Ga0.85N or Al0.15Ga0.85N, which are widely used in the GaN-based optoelectronic devices. The relationship between GaAlInN alloy composition and input molar ratio of group III metalorganic compounds at various growth conditions has been calculated. The influence of growth temperature, nitrogen fraction in the carrier gas, input partial pressure of group III metalorganics, reactor pressure, V/III ratio and the decomposition rate of ammonia on the composition of deposited alloys are studied systematically. Based on these calculated results, we can find out the appropriate growth conditions for the MOVPE growth of GaxAlyIn1-x-yN alloy lattice matched to GaN, In0.15Ga0.85N or Al0.15Ga0.85N. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

GaN epilayers on sapphire substrate grown by metalorganic vapor-phase epitaxy (MOVPE) in a horizontal-type low-pressure two-channel reactor were investigated. Samples were characterized by X-ray diffraction (XRD), Raman scattering, atomic force microscopy (AFM) and photoluminescence (PL) measurements. The influence of the temperature changes between low temperature (LT) deposited GaN buffer and high temperature (WT) grown GaN epilayer on crystal quality of epilayer was extensively studied. The effect of in situ thermal annealing during the growth on improving the GaN layer crystal quality was demonstrated and the possible mechanism involved in such a growth process was discussed. (C) 2001 Elsevier Science B.V. All rights reserved.