317 resultados para Nickel compounds
Resumo:
Electrocatalytic oxidation of sulfhydryl compounds was effective on a copper hexacyanoferrate (CuHCF) film glassy carbon electrode, at a significantly reduced overpotential (0.55 to 0.65 V) and for a broader pH range (2.0 to 7.0). The electrocatalysis was
Resumo:
Amperometic flow measurements were made at +0.55 V (vs. Ag/AgCl) in 0.1 mol l-1 KOH electrolyte with an Ni(II) chemically modified electrode (CME) with an Eastman-AQ polymer film. The use and characteristics of a Ni(II)-containing crystalline and polymer-modified electrode obtained by a double coating step as a detector for amino acids in a flow-injection system using reversed-phase liquid chromatography are described. The detection of these analytes is based on the higher oxidation state of nickel (NiOOH) controlled by the applied potential. The electroanalytical parameters and the detection current for a series of amines and amino acids were investigated. The use of such a CME in the flow-injection technique was found to be suitable in a solution at low pH. The linear range for glycine is 5 X 10(-6)-0.1 mol 1-1 with a detection limit of 1.0 X 10(-6) mol l-1. A 1 X 10(-4) mol 1-1 mixture of serine and tyrosine was also detected after separation on an Nucleosil C18 column.
Resumo:
In this paper, three new topological indices, A(x1), A(x2), and A(x3), have been developed for use in multivariate analysis in structure-property relationship (SPR) and structure-activity relationship (SAR) studies. Good results have been obtained by using them to predict the physical and chemical properties and biological activities of some organic compounds.
Resumo:
The reduction of Y(III) ions in molten chloride is known to be a one-step three electron reaction [1, 2, 3], but a voltammogram of YCl3 in molten LiCl-KCl-NaCl at a nickel electrode shows at least two reduction peaks of Y(III) ions, indicating the possibility of formation of Ni-Y intermetallic compounds. Using a galvanostatic electrolysis method, samples were prepared at several current densities at 450, 500, 600 and 700-degrees-C, respectively, and were identified with X-ray diffraction (XRD) and electron probe microanalysis (EPMA) methods. The results show that Ni2Y, Ni2Y3 and NiY can be produced by electrolysis and Ni2Y is found to be the predominant Ni-Y intermetallic compound under the experimental conditions. Nickel appears to diffuse in Ni2Y faster than yttrium, and the diffusion process is the rate determining step during Ni2Y formation.
Resumo:
A glassy carbon electrode coated with an electrodeposited film of mixed-valent cobalt oxide/cyanocobaltate (Co-O/CN-Co) enabled hydrazine compounds to be catalytically oxidized at the greatly reduced overpotential and in a wide operational pH range (pH 2.0-7.0). Electrocatalytic activity at the Co-O/CN-Co modified electrode was evaluated with respect to solution pH, film thickness, supporting electrolyte ions, potential scan rate, operating potential, concentration dependence and other variables. The Co-O/CN-Co film electrode was completely compatible with a conventional reversed-phase liquid chromatographic (RP-LC) system. Practical RP-LC amperometric detection (RP-LCEC) of hydrazines was performed. A dynamic linear response range over three orders of magnitude and a detection limit at the pmol level were readily obtained. The Co-O/CN-CO film electrode exhibited excellent electrocatalytic stability in the flowing streams.
Resumo:
This approach is undertaken to examine the correlation ability of the general a(N)-index (GAI) to predict chromatographic behavior. The test is performed on various types of organophosphorus compounds. The results demonstrate that the GAI possesses a good correlation with chromatographic properties.
Resumo:
The C-H stretching, C-H bending, C-C stretching and the low-frequency vibrational regions have been investigated by Raman spectroscopy for [n-CnH2n+1NH3]2ZnCl4 with n = 7-12, 16. The frequencies and relative intensities are related to the length of the carbon chain in the molecules and present the odd-even effect of the carbon atom numbers in the chains. Some changes in the spectra are interpreted in terms of the different molecular packing.
Resumo:
The electrochemical reduction of yttrium ion on a molybdenum electrode in a LiCl-KCl-NaCl eutectic melt at 723 K was found to be almost reversible and to proceed by a one-step three electron reaction. The diffusion coefficient D of the Y(III) ion was measured to be (3.3 +/- 0.4) x 10(-6) cm2 s-1 by cyclic voltammetry, (5.0 +/- 0.9) x 10(-6) cm2 s-1 by the rotating disk electrode method, and (7.1 +/- 0.7) x 10(-6) cm2 s-1 by chronopotentiometry. The D values obtained by the latter two methods are in fairly good agreement with each other. The rather low D value obtained by cyclic voltammetry might be attributed to the fact that yttrium metal can dissolve slightly in the chloride melt. The standard potential of Y(III)/Y(0) couple was determined to be (-3.174 +/- 0.006) V (vs. Cl2/Cl-) by open-circuit potentiometry, (-3.15 +/- 0.02) V (vs. Cl2/Cl-) by the rotating disk electrode method and (-3.16 +/- 0.02) V (vs. Cl2/Cl) by chronopotentiometry. These three values are in good agreement with each other. Several types of Ni-Y intermetallic compounds were found to be formed on a nickel electrode.
Resumo:
A vitamin B-12 chemically modified electrode (CME) was constructed by adsorption of vitamin B-12 onto a glassy carbon surface. The electrode catalyzes the electrooxidation of hydrazine compounds over a wide pH range. The electrocatalytic behavior of hydrazines is elucidated with respect to the CME preparation conditions, solution pH, operating potential, mobile phase flow rate, and other variables. When applied to liquid chromatographic detection of the analytes, the vitamin B-12 CME yielded a linear response range over 2 orders of magnitude, and detection limits at the picomole level. The vitamin B-12 CME offers acceptable catalytic stability in both batch and flow systems.
Resumo:
The bonding and the 4f orbital effect of lanthanide elements at different valence state in their compounds have been studied by INDO method in this paper. The results obtained show that the bonding of lanthanide compounds is affected by many factors, such as valence state, ionic radius, ligand, coordinate number, space configuration etc. The strength of bonds composed of different ligands with lanthanide is distinctly different. The covalence of Ln-L bonds of lanthanide ions at high valence state in their compounds is larger than that at low valence state, The covalency at low coordinate number is larger than that at high coordinate number. Some lanthanide compounds with special configuration, besides sigma-bond, can form p(pi)-d(pi) dative bond with much overlap, which makes the Ln-L bond increase markedly. The effect of 4f orbitals on bonding is far less than that of 5d orbitals. The Ln 4f orbitals at 3 or 2 valence state may be considered to be essentially localized, while the contribution of 4f orbitals on bonding in 4 valent cerium compounds increases obviously, up to 1%.
Resumo:
The thermal oxidation behaviour of polypropylene containing tetramethylpiperidine compounds and corresponding pentamethylpiperidine compounds are compared using air oven aging, oxygen uptake and thermogravimetry. Carbonyl formation, the induction period of oxygen absorption and weight loss have been selected to characterize the degree of oxidation. The results show that the stabilizing effectiveness of pentamethylpiperidines is always higher than that of tetramethyl types. Radical-trapping mechanisms cannot explain this, because large amounts of nitroxyl radicals are formed by the tetramethylpiperidine compounds. The quenching of singlet oxygen appears to be involved in thermal oxidation of polypropylene containing pentamethylpiperidine compounds. Specific hydrogen bonding between pentamethylpiperidines and hydroperoxide may account for their better thermal stabilizing action than tetramethylpiperidines.
Resumo:
A novel Eastman-AQ/Ni(II) chemically modified electrode (CME) produced by "double coating step" deposition of a poly(ester sulphonic acid) polymer film and Ni2+-containing crystalline species onto glassy carbon instead of a metallic nickel electrode exhibited stable electrocatalytic oxidation of numerous alpha-hydrogen compounds including carbohydrates, amines and amino acids. In cyclic voltammetry, the electrocatalysis appeared with an irreversible anodic wave at +0.55 V (vs. Ag/AgCl). The CME was adapted for constant-potential amperometric detection of these compounds in flow injection analysis. Using the CME, the linear response concentration range was between 1.0 x 10(-5) and 5.0 x 10(-2) mol/l and the detection limit was 5.0 x 10(-6) mol/l for glucose. The stability of the CME was adequate for routine quantitative application.
Resumo:
The mass spectral behaviour of 15 new type of organic phosphorus compounds with a considerable insecticidal activity, 1, 3,2-oxazaphospholidine 2-sulfides derivatives, under 70 eV electron impact has been studied by means of high and low resolution mass spectrometry as well as by B/E linked scan and MIKES/CID analysis. Discussion is focused into the isomerization between oxygen and sulphur in molecules and some rearrangement reactions.
Resumo:
The relationship between the alpha-N index and physical properties of neutral phosphorus extractants is studied. Using the general alpha-N index which could describe extractants with minute difference in structure, the good correlation between it and various physical properties of the neutral phosphorus extractants (e.g., densities, refractive index, shift ratio of paper chromatography and IR frequencies of bond P = O) is obtained. The result indicates that general alpha-N index is a good topological index of organic compounds.