268 resultados para HPLC-ESI-MSn
Resumo:
花粉管是种子植物受精过程中的雄性生殖单位的载体,由于其生长依赖于胞内Ca2+梯度,并具有典型的顶端极性生长的特点,因而成为近年来研究植物细胞相互识别、胞内和胞外信号传导理想的模式系统。裸子植物花粉与被子植物相比具有萌发时间长、生长缓慢等特点。Ca2+在裸子植物花粉萌发和花粉管生长中的作用机制目前尚不明确。本研究以裸子植物白皮松(Pinus bungeana)的花粉为材料,运用不同浓度钙通道抑制剂Nifedipine(Nif)处理,对其花粉萌发和花粉管生长进行了细胞学研究和蛋白质组学分析,以探讨Ca2+对白皮松花粉生长的调控机制,为进一步揭示裸子植物花粉萌发和花粉管生长机理提供参考。 本论文首先研究了钙通道抑制剂Nif和Ca2+螯合剂EGTA对白皮松花粉萌发和花粉管生长的影响。结果表明,用Nif处理花粉后,花粉萌发和花粉管生长均受到明显抑制。经Ca2+荧光探针Fluo-3AM标记,对Nif处理后Ca2+在花粉管中的分布模式进行了观察,发现Ca2+在正常生长的花粉管中呈梯度分布,并在其顶端的荧光最强。与对照相比,处理后的花粉管荧光强度明显减弱,且顶端Ca2+梯度消失。通过EGTA漂洗后的花粉粒,在正常培养基上萌发率较高,但其生长速率受到抑制。由此说明了细胞壁钙库对花粉管生长的抑制效应显著高于对花粉萌发的影响,是花粉管生长的限速因子。同时外加钙调素还可逆转EGTA对其花粉萌发和花粉管生长的抑制。上述结果表明,白皮松花粉萌发及花粉管生长需要外源Ca2+的内流,以及胞内形成的Ca2+浓度梯度。 用FM4-64探针标记结果发现,正常花粉管中的胞吞作用主要发生在顶端和亚顶端区域,胞吞的小泡也集中分布在这两个区域。经Nif处理后,既不影响花粉管的胞吞过程,同时胞吞发生的位置也与对照相似,只是胞吞的小泡分散于整个花粉管中。电子显微镜观察表明,各种细胞器在白皮松正常生长的花粉管中分布与被子植物存在较大差异,例如前者无明显地分区现象,不具胼胝质塞。白皮松花粉管顶端和亚顶端的壁旁体与质膜融合现象频繁发生。花粉管经Nif处理后,线粒体出现不同程度的解体和液泡化,内质网液泡化和核糖体脱落,液泡大量聚集在花粉管顶端,壁旁体与膜融合现象减少,以及花粉管壁明显变薄等。此外,通过微丝特异性探针鬼笔环肽标记结果表明,正常生长花粉管的微丝呈长轴向排列, Nif处理后微丝断裂,其断裂程度与处理浓度有关。由此可见,外源Ca2+对花粉管的胞吞无明显抑制或促进作用,但对胞吞小泡重回收可能有影响。当胞内Ca2+梯度消失后,则明显抑制了微丝骨架的聚合,进而使胞吐作用减缓,高尔基体分泌小泡聚集,多种细胞器液泡化,引起花粉管顶端膨大,细胞壁变薄,继而抑制花粉管的正常生长。 运用免疫荧光标记技术显示,正常生长的花粉管壁含有纤维素、胼胝质、果胶质和阿拉伯半乳聚糖蛋白(AGPs),其中纤维素和胼胝质在细胞壁上呈均匀分布,而酸性果胶质只存在花粉管两侧壁上,酯化果胶分布于花粉管顶端。经过Nif处理后,胼胝质和酸性果胶质均在花粉管顶端累积,而AGPs和纤维素的分布却无明显变化。另外,傅里叶红外光谱分析结果也同样支持上述结论。通过花粉管壁蛋白的SDS-PAGE分析表明,Nif对细胞壁蛋白的合成也有较大的影响。 在花粉管的钙通道受到抑制后,应用蛋白质组学技术分析其蛋白质的表达图谱,通过双向电泳已分离出约1000个蛋白质斑点,经软件分析发现,除其中50个蛋白斑点外,大部分蛋白质的表达量均未发生变化。上述50个发生变化的蛋白斑点酶切后,再经过ESI-MS/MS鉴定和质谱数据库的搜索,共鉴定出28个蛋白,其中12个为上调蛋白,16个下调蛋白,根据其主要功能分为与代谢、细胞扩展、翻译后修饰以及信号相关的蛋白。经过Nif处理后,花粉管中碳水化合物代谢能力下降,ATP的产生受到抑制,参与细胞壁多糖合成及小泡运输的蛋白,如valosin containing protein(VCP)、reversibly glycolsylated polypeptide(RGP)、UDP-glucose dehydrogenase (UDPGDH)和α-tubulin表达下调。另外,通过上述方法还鉴定出与丝氨酸/苏氨酸激酶保守结构域同源的受体蛋白激酶等。 综上所述,白皮松花粉管钙通道受到抑制后,通过影响花粉管蛋白的表达,抑制微丝微管骨架的组装,致使胞吐速度变慢,花粉管壁酸性果胶质、胼胝质等多糖分布的变化及总多糖含量的减少,最终抑制了花粉管的正常生长。
Resumo:
花粉管是种子植物受精过程中雄性生殖单位的载体,具有典型的极性顶端生长模式,因此成为研究细胞极性生长机理的理想模式体系。本研究以裸子植物白杄(Picea meyeri Rehd.et Wils)花粉为材料,并以对花粉萌发和花粉管生长起关键作用的Ca2+作为切入点,分析钙-钙调素在花粉萌发及花粉管极性生长中的作用,同时也为进一步探讨它们在其他植物细胞中的作用机理研究提供重要参考。 通过细胞化学定位证明,白杄花粉中含有丰富的游离钙离子和钙调素,在花粉管顶端呈现明显的梯度分布;钙调素特异拮抗剂三氟拉嗪(trifluoperazine,简称TFP)可以在钙离子存在的情况下与钙调素特异性结合,从而抑制钙-钙调素复合物对下游效应蛋白的激活。微摩尔浓度的TFP明显抑制白杄花粉萌发以及花粉管的生长,并导致大部分花粉管畸形生长。TFP处理后的花粉管(约80%以上)中游离钙离子梯度消失或梯度不明显,由此说明钙调素参与花粉管顶端游离钙离子梯度的维持。抑制剂处理显著影响钙调素在花粉管顶端的梯度分布模式,梯度落差明显减小。 应用鬼笔环肽标记花粉管微丝骨架表明,正常生长的花粉管中微丝骨架沿花粉管长轴平行的方向呈网络状分布,但是在花粉管顶端仅有杂乱的微丝片断分布;低浓度TFP处理之后,微丝骨架分布的方向性丧失并开始卷曲,花粉管顶端的微丝片断消失,高浓度TFP处理之后微丝骨架完全断裂,聚集成短粗的束状。FM4-64标记花粉管后发现,经TFP处理的花粉管顶端胞吞速度明显加快,最终染料集中分布在紧贴质膜下很小的区域内,同时胞吞过程加快主要表现在染料进入花粉管细胞的速度加快,而随后染料在细胞内的扩散速度并无明显变化。以酸性磷酸酶为标志的胞吐活性也显著下降。通过MitoTracker染色发现,TFP处理之后花粉管中线粒体的形态和分布都发生了显著变化;在电子显微镜下观察显示,抑制剂处理的花粉管中液泡化现象严重,线粒体膨大变形,其内嵴的结构遭到严重破坏,同时高尔基体和内质网的形态也都发生了不同程度的异常变化,另外线粒体和液泡还出现了类似于自体吞噬的现象。 在荧光显微镜下观察发现,在标准培养基中培养的花粉管经苯胺兰染色后,胼胝质分布于整根花粉管侧壁上,而顶端区域胼胝质分布却很少或不存在。但经TFP处理之后,在花粉管细胞壁的个别区域有胼胝质大量沉积,同时在花粉管中还出现能被苯胺兰特异染色的许多颗粒状物质。此时花粉管顶端细胞壁中的纤维素含量明显减少。以单克隆抗体JIM5、JIM7标记果胶质,在激光扫描共聚焦显微镜下观察发现,标准培养基中培养的花粉管,酸性果胶质分布于整根花粉管的侧壁中,但在其顶端的含量很低或不存在,与此相反,酯化果胶质只分布在花粉管的顶端;而经TFP处理的花粉管中,酸性果胶质均匀分布于花粉管细胞壁上,酯化果胶质仅出现在花粉管基部的细胞壁中。单克隆抗体LM2和LM6标记结果显示,正常生长的花粉管细胞壁中AGPs呈周期性的环状分布,TFP处理后AGPs仅仅分布在花粉管基部的细胞壁中。SDS-PAGE电泳分析显示,抑制剂处理之后花粉管细胞壁蛋白的表达也发生明显变化。由FT-IR分析进一步证实了上述两种果胶质及纤维素在花粉管顶端细胞壁中相对含量的变化趋势。 利用双向电泳技术分离花粉管全蛋白,结果发现正常生长和TFP处理后的花粉管的大部分蛋白斑点都处于pI 4-8以及分子量在14-97 KD的范围内,主要是一些中等分子量大小、微酸性和中性的蛋白类群。由软件分析显示,除其中76个蛋白外,大部分蛋白质的表达并未发生变化。将上述76个表达量发生变化的差异蛋白进行胶内酶解,并经ESI-MS/MS分析鉴定,以及质谱数据库搜索,最终鉴定出57个蛋白,其中23个表达量上调,其余34个表达量下调。根据其生物学功能可以分为碳水化合物及能量代谢、胁迫及防御反应、细胞扩展、信号转导等功能蛋白类群。经TFP处理后,花粉管中碳水化合物及能量代谢过程整体水平下降,氧化磷酸化水平减低,但是丙酮酸脱羧酶旁路代谢水平却略有上升。由此暗示,花粉管在生长停滞的环境条件下,该途径可作为能量供应的替代机制;参与转一碳单位反应的蛋白表达量普遍上调,参与细胞延展(如细胞骨架重构、细胞壁多糖合成)的蛋白表达量下调,此项研究结果与上述的细胞生物学分析结论基本一致。 综上所述,当钙调素蛋白功能受到抑制后,顶端游离钙离子浓度梯度消失同时胞质钙离子浓度显著升高;细胞代谢水平(糖酵解和三羧酸酸循环)整体下降,而可能通过丙酮酸脱羧酶旁路来维持最低限度的能量供应;同时花粉管微丝骨架发生解聚,花粉管细胞壁组成成分合成水平下降,细胞延展相关的能力减弱,最终导致花粉管生长的停滞。钙-钙调素信号存在于白杄花粉萌发和花粉管生长这一特定的细胞生物学事件中,并参与花粉管顶端游离钙离子梯度的维持和定向生长。
Resumo:
本文研究了富贵草对模拟光斑的光合响应、银杉对光的适应性以及大叶黄杨叶片内部光能利用梯度三个方面的问题。 1)研制了用于林内光环境调查和研究的光量子计组件。 关键词:光量子计,A/D板 2)以亚热带常绿阔叶林下一种常见的灌木富贵草为研究对象,利用气体交换和叶绿素荧光技术研究了其对模拟光斑的光合响应。在同样辐射通量(非光抑制)的情况下,光合诱导过程中光斑可以提高富贵草对光斑的利用能力(光斑诱导的碳同化量可高出对照48%)。叶绿素荧光测量结果表明:1)光斑与光斑之间的暗期发生了qN弛豫过程;2)暗期之后的光期光化学能量转换效率提高。强光光斑簇可以诱导富贵草光抑制的产生,但程度较连续光低。 关键词:模拟光斑, 叶绿素荧光, 光诱导过程 3)用高效液相色谱(HPLC)和77K低温荧光发射光谱技术来研究快速诱导组分发生的时间内光斑所导致NPQ (qN)降低的生理原因。在非光抑制条件下,光斑造成的NPQ (qN)降低的生理原因包括叶黄素循环的变化及LHCIIs聚集态的变化;此外低温荧光数据还显示光斑导致的PSII/PSI荧光产量比率要高于连续光,说明光斑导致植物对于光的利用增加。以上结果说明模拟光斑诱导了富贵草内囊体膜较低水平的能态。 关键词:模拟光斑,叶黄素,聚集态 4)用气体交换等技术测定了部分银杉幼树的生理生态指标,用鱼眼镜头测定了所测叶片的林冠开度(OP)。研究了沿林冠开度梯度的银杉幼树对光的适应性。银杉幼树在林窗边缘表现出较好的适应性,包括高的ISG(综合地上部分茎生长),高的HG(当年生树高生长速率),较高的LMA(单位叶片面积干物质重),较高的Pns(单位叶片干物质水平的净光合速率),高的单位叶片的碳同化速率,较高的截获光的单位叶片的叶面积等等,可以初步确定银杉属于Gap树种:在所测定的范围内(0. 00139%-0. 0109%)TN(土壤总氮量)明显不如OP对银杉幼树生长的影响大;综合的生态可塑性指标必须考虑具体的实验地情况、选取合适的形态学和生理学的因子、并结合多个相似生长环境下的树种来进行考虑。 关键词:林冠开度,生理生态指标,生态可塑性 5)分析了湖南八面山的银杉的某些光合特性,并比较了极郁闭( OP<4%)情况下银杉当年生叶片与大树顶端枝条(OP>30%)当年生叶片之间光合特性上的差异。极郁闭情况下银杉叶片生长出现黄化现象,但银杉幼苗又不耐强光。银杉幼苗一天的光合动态变化表明,银杉最大光合速率在早晨8:00左右,当光照超过光饱和点时,净光合速率迅速下降,其后略有回升,呈不太典型的双峰模式。气孔关闭与净光合速率的下降有密切的关系。早晨8:00到11:00间叶黄素循环运转,对光合系统起到一定保护作用。 关键词: 银杉,色素分析,光合作用 6)采用一种新方法来测量大叶黄杨叶片内部的绝对光能利用效率梯度的曲线。该方法基于光声光谱的深度分析(Depth-Analysis)理论,并结合了光纤微探测器的叶片光梯度测量结果。日本小檗(Berberis thunbergii DC.)叶片的光声光谱扫描显示了深度分析的精确性。实验结果表明:叶片内部利用光能效率最低处在栅栏组织和海棉组织之间(入射光能的0.026%-660nm红光);越靠近叶片的上表皮和下表皮,趋势显示叶片组织利用光能效率有上升的趋势(分别为0.092%,0.036%)。因此,不同叶肉组织绝对光能利用效率是不同的,该实验结果直接证实了Han &Vogelmann 1999b所提出的假设。 关键词: PA深度分析 叶片内部的光梯度 光化学损失 光吸收梯度
Resumo:
草地在世界各种不同的气候带和土壤类型区均有分布,约占陆地面积的24%。尽管二十世纪中叶以来,人类通过各种措施,使氮素由大气圈进入生物圈的量已经翻了一翻,但是,草地生态系统由于没有得到足够的氮素补充,其生产力至少是季节性地受到氮素的制约。我国草原生态系统的退化与氮素匮乏已经引起了广泛重视。尽管一些研究者的工作已经涉及到氮素循环的一些方面,但是关于草原生态系统的氮素平衡过程的系统研究迄今尚未开展。地下器官中贮藏养分的积累是多年生牧草抵御不良环境条件的物质保障,碳水化合物是我国典型草原植物重要的贮藏营养物质。但是关于我国草原生态系统贮藏养分的研究还相当匮乏。值得一提的是,不合理的人类活动也加剧了草地生态系统氮素的损失,甚至对全球环境和人类健康产生了重要影响。为此,我们在中国科学院内蒙古草原生态系统定位研究站的羊草样地设计了氮素添加试验,采用15N稀释法对典型草原羊草群落的氮素吸收利用、氮素平衡进行了研究,并就氮素添加条件下,植物氮素利用与植物竞争的关系、氮素吸收分配与牧草生物产量与品质的关系进行了探讨。同时采用高效液相色谱对羊草群落植物贮藏碳水化合物的种类与含量进行了测定。 15N稀释法的试验结果表明:我国典型草原羊草群落吸收的氮素平均16.41%来源于肥料,83.59%来源于土壤。氮素添加不仅显著促进了羊草群落地上器官对肥料氮索和土壤氮素的吸收量,而且促进了地下器官对肥料氮素和土壤氮素的吸收量。生物量达到最大时,羊草群落吸收的氮素分配到地下器官中的比例平均为74.85%,分配到地上器官中的比例平均为25.15%。植物吸收的肥料氮素在地上和地下器官之间的分配比例约各占50%。 在我国典型草原羊草群落,植物对肥料氮素的回收率仅为31.61%,氮素添加显著影响羊草群落植物对肥料氮素的回收,随着氮素添加量的提高,地上和地下植物器官对肥料氮素的回收量均显著提高。凋落物的肥料氮素回收率为2.92%,地下凋落物的回收率显著高于地上凋落物。肥料氮素的土壤存留率为36.16%,主要分布在地表至40cm的土层范围内(>95%)。各土层存留的标记肥料氮素量均随着氮素添加量的增加而显著提高。肥料氮素的当季损失率为21.77%-43.38%。风险:收益分析表明,在本试验条件下,添加5.25gN/m2与28gN/m2的处理风险大于收益,添加17.5g/m2的处理风险最低,收益最高,在草原生态系统的管理中可以参考。 为了了解羊草群落植物的竞争能力是否对羊草群落植物的相对多度有影响,我们对不同盖度的10个物种的15N吸收速率、15N分配、植物组织氮素含量、单株生物量、根/冠比、氮素生产力等反映植物竞争能力的指标进行了测定和分析。发现向根系的氮素分配比例、根/冠比、和氮素生产力与植物的相对盖度显著正相关,向地上器官的氮素分配比例、氮素吸收速率与相对盖度呈显著负相关,而植物组织氮素含量、和单株生物量与植物相对盖度无关。 试验前,我们认为氮素吸收速率应该与植物的相对多度显著正相关,但是本试验发现却是显著负相关。这一结果说明,高的氮素吸收速率并不能代表较高的竞争能力,而是稀少植物能够与优势植物共存的一种生理机制。 氮素的吸收与分配显著地影响牧草的生物产量和品质。氮素添加提高了羊草生物量,促进了生物量向地上器官的分配比例,降低了向根系的分配比例,使根/冠比显著降低。氮素添加促进了羊草对氮素的吸收以及向茎叶中的分配比例,降低了向根系的分配比例,提高了羊草各器官的氮素含量和地上器官的蛋白质含量,对根系的蛋白质含量无显著影响。本试验条件下,氮素添加水平为17.5gN/m2时,羊草根、茎、叶生物产量均最高。与17.5gN/m2的处理相比较,添加28gN/m2的处理,羊草的生物产量以及牧草蛋白质含量均无显著差异。初步认为,本实验条件下,17. 5gN/m2是较为适宜的氮素添加量。 地下器官中贮藏养分的积累是多年生牧草抵御不良环境条件的物质保障,碳水化合物是我国典型草原植物重要的贮藏营养。采用高效液相色谱(HPLC)对羊草群落地下器官的贮藏性碳水化合物进行了分析。结果表明,羊草群落地下贮藏碳水化合物种类主要包括甘露糖醇、果聚糖、蔗糖、葡萄糖和果糖。其中甘露糖醇是最主要贮藏碳水化合物,约占60%;其次是果聚糖,约占30%。氮素添加量对羊草群落地下贮藏碳水化合物有显著影响。在0~50 g NH4N03. m-2.yr-1范围内,随着氮素添加量的增加,总糖、果聚糖、甘露糖醇的含量均逐渐升高。氮素添加时期对羊草群落地下贮藏碳水化合物含量亦有显著影响。7月初(雨季)添加氮素比4月份(牧草开始返青)更有利于牧草地下贮藏碳水化合物的积累。 对羊草根茎中的贮藏性碳水化合物的测定结果表明,羊草根茎中的贮藏碳水化合物组分主要包括果聚糖、甘露糖醇、蔗糖、葡萄糖和果糖。其中果聚糖是最主要贮藏碳水化合物,约占60%:其次是甘露糖醇,约占20%。氮素添加量对羊草根茎中的贮藏碳水化合物有显著影响。在0~17.5 g N/m2范围内,随着氮素添加量的增加,总糖、果聚糖、甘露糖醇的含量均逐渐升高。氮素添加时期对羊草根茎中的贮藏碳水化合物的含量亦有显著影响。在7月初添加氮素比4月份添加氮素更有利于贮藏碳水化合物的积累。
Resumo:
草地退化不仅仅是今天中国才发生的事情。历史上曾经发生“黑尘暴”的美国North Dakota州,现在仍然有62.7%土地被用作耕作,林地所占面积仅仅占1%。私有制和种植业较畜牧业的高的利润率,是该州种植业比重高于畜牧业的重要原因。草原保护项目(CRP)得到了美国政府财政的大力支持, 在North Dakota州采用了以草地恢复为主的措施。美国发达的教育体系带来的高流动率,使得North Dakota州自30年代后居住人口稳定在60-70万成为可能,从而避免了我国出现的草原地区不断增加的人口压力。由此可见:草地作为重要的自然资源,不可能完全保护起来;没有其他配套措施,私有制可能会带来新一轮垦殖;草地畜牧业仍然是畜牧业的重要组成部分,畜牧业发展需要结合种植业尤其需要与饲料生产相结合。 依据生态系统服务的理念,首次发展了生态系统服务指数(ESI),试图通过对生态系统服务功能的综合考虑,提出科学的适宜放牧率的评价方法。本文利用美国北达科他州立大学中部草原研究站17年长期放牧试验数据,选取植物多样性Shannon-Wiener指数、地上净初级生产力、土壤表层含水量和单位面积家畜增重等四个指标,通过对不同指标分别赋予不同的权重,计算不同管理目标下ESI及其稳定性,并对单目标管理与多目标管理进行了比较研究。结果表明,对于北美混合普列里(Prairie)草地,围封不利用或建立自然保护区,虽然生态系统比较稳定,但既不能有效的提高植物多样性、初级生产力和土壤水分含量等生态功能,又没有畜产品产出;而在重牧或极重牧处理下虽然获得了较大的畜产品生产,但导致了草地生态系统的退化和较大的系统不稳定性。因此,这两种管理方式在实践中都是不可取的。应用生态系统服务指数综合考虑,认为应该权衡各项生态功能和生产功能,此时轻牧或中牧是最适宜的。因此,ESI的建立避免了单项指标的评价偏差,使得适宜放牧率的确定更加合理。 利用前面构建的多目标权重评价体系,结合内蒙古草原生态系统定位站放牧试验样地的数据,探讨了锡林郭勒盟定位站附近的适宜放牧率为2.67羊/ha,低于单目标条件下的每公顷绵羊4羊/ha。同时在经济学和生态系统系统服务理论的基础上,依据谢高地等人(2001年)的研究,并提出了环境税和生态补偿的标准,分别是每公顷15元和90元。
Resumo:
Ⅰ 虎杖聚酮类化合物生物合成相关基因的克隆及功能分析 虎杖 (Polygonum cuspidatum Sieb. et Zucc) 属于蓼科蓼属多年生草本植物,在中国和日本民间曾被广泛用于动脉粥样硬化、高血压、咳嗽、化脓性皮肤炎以及淋病的治疗,具有祛风利湿、散瘀定痛、止咳化痰等功效。而在现代医学上最令人瞩目和具有发展前景的是其在抗肿瘤、心血管保护、抗氧化方面的作用,相关疗效主要来自于虎杖中结构迥异、种类丰富的聚酮化合物及其衍生物资源。这些聚酮类化合物主要包括蒽醌、大黄素、大黄素-甲醚、大黄酚、芪类以及类黄酮化合物等。其中,大部分聚酮类化合物生物合成途径机制尚不明确,但可以肯定的是植物类型III聚酮合酶type III polyketide synthases (PKSs) 在这些聚酮化合物的生物合成起始反应中行使着关键的作用。因此,除了我们所熟悉的类黄酮化合物、芪类化合物之外,进一步分离和分析虎杖中其它重要聚酮类化合物生物合成所涉及的类型III聚酮合酶基因的是非常值得期待的。 目前,已经有14个植物类型III PKS基因被克隆和功能分析。植物类型III PKS的共同特征包括基因结构、序列相似性、保守的活性中心、酶学性质以及共同的催化机制等。显花植物(裸子植物和被子植物)中,植物类型III PKS的基因结构绝对保守,除了一个早期报道的金鱼草(Antirrhinum majus)查尔酮合酶chalcone synthase (CHS) 含有第二个内含子外,迄今为止所有已知的植物类型III PKS基因均含有一个内含子且该内含子位置保守。有趣的是,在本研究中,两个含有3个内含子的类型III PKS基因从虎杖中被分离,且两个基因3个内含子的位置完全保守,这是三内含子类型III PKS基因首次得到分离。除了新奇的基因结构外,体外功能分析显示上述两个基因还具有特殊的酶学性质和功能。 本论文围绕上述2个三内含子基因开展了以下工作: 虎杖中一个由三内含子基因编码的新型类型III聚酮合酶 一个类型III PKS的cDNA及其相应的基因(PcPKS2)从药用植物虎杖中被克隆。序列分析结果表明,PcPKS2的开放阅读框被3个内含子分隔,这是一个出人意料的发现,因为截至到目前为止,除了金鱼草一个CHS基因外,所有已知的类型III PKS基因均在固定位置上含有一个内含子。除了特殊的基因结构外,PcPKS2显示了一些有趣的特性:(i) CHS“守卫”苯丙氨酸——Phe215和Phe265在PcPKS2中双双缺失,它们分别被亮氨酸和半胱氨酸取代;(ii) 体外功能分析结果表明,当酶促反应体系的pH值为6.5-8.5时,大肠杆菌中过表达的重组PcPKS2高效地合成丁烯酮非环化产物——4-香豆酰甘油酸内酯(4-coumaroyltriacetic acid lactone (CTAL))为主产物,而丙烯酮非环化产物bis-noryangonin (BNY) 以及苯亚甲基丙酮为副产物;而当酶促反应体系的pH值为9.0时,PcPKS2高效地合成苯亚甲基丙酮为主产物,而CTAL、BNY为副产物。另外,除了上述3种产物外,在不同的pH条件下,还有痕量的柚皮素查尔酮能被检测到。此外,在4-香豆酰辅酶A(4-coumaroyl-CoA)的类似化合物中,除了4-香豆酰辅酶A外,只有feruloyl-CoA能够被PcPKS2接受作为起始底物。PcPKS2不接受脂肪酰辅酶A——异丁酰基辅酶A(isobutyryl-CoA)、异戊酰基辅酶A(isovaleryl-CoA)以及乙酰辅酶A(acetyl-CoA)作为起始底物。Southern blot杂交结果表明,在虎杖基因组中存在2-4个PcPKS2基因的拷贝。Northern blot杂交结果表明,在根茎和幼叶中,PcPKS2表达量很高,而在根中无表达。叶中的PcPKS2的表达受病原菌诱导,但不受伤诱导。 虎杖中一个编码双功能类型III聚酮合酶的三内含子基因的鉴定 显花植物中,所有已知的类型III PKS 基因均含有一个内含子且位置绝对保守。本研究中,综合运用PCR技术,从富含聚酮类化合物的植物虎杖中克隆得到一个类型III PKS 基因(PcPKS1)及其cDNA。序列分析结果表明,PcPKS1含有3个内含子。系统发育分析结果表明,PcPKS1与其它植物的CHSs归为一类。然而,体外功能分析结果表明,当酶促反应体系pH值为7.0时,大肠杆菌中过表达的重组PcPKS1高效地合成柚皮素查尔酮(naringenin)为单一产物;而当pH值为9.0时,苯亚甲基丙酮(p-hydroxybenzalacetone)几乎为重组PcPKS1的唯一产物。后续的研究表明,与典型的CHSs相比,PcPKS1具有另外一些不同的特点:在pH值为9.0时(PcPKS1的苯亚甲基丙酮合成活性最适pH值),在4-香豆酰辅酶A的类似化合物中,只有feruloyl-CoA能够被PcPKS1接受作为起始底物。与CHSs展现出的对脂肪酰辅酶A宽泛的底物特异性不同,在不同的pH条件下,PcPKS1不接受异丁酰基辅酶A(isobutyryl-CoA)、异戊酰基辅酶A(isovaleryl-CoA)以及乙酰辅酶A(acetyl-CoA)作为起始底物。以上数据指出重组PcPKS1是一个具有查尔酮合酶(CHS)和苯亚甲基丙酮合酶(BAS)活性的双功能酶。Southern blot杂交结果表明,在虎杖基因组中存在2-4个PcPKS1基因的拷贝。Northern blot杂交结果表明,PcPKS1可能在防御病原菌和草食动物方面起着重要作用。PcPKS1和PcPKS2共同从虎杖中被分离的事实极有可能暗示了苯丁烷类化合物(phenylbutanoid)及其衍生物存在于虎杖中。 Ⅱ 高山红景天酪醇生物合成代谢途径机制研究 高山红景天(Rhodiola sachalinensis A. Bor)是景天科(Crassulaceae)红景天属多年生草本植物,作为一种适应原性中草药在中国的应用史已经超过800年。最近红景天提取物作为一种重要的商业药用制剂资源,其应用遍及欧洲、亚洲和美国,其主要治疗范围包括抗变应性和消炎,提高心理机敏性等。目前已经非常明确,红景天甙(salidroside)和甙元酪醇(tyrosol)是红景天属植物的主要功效成分,主要分布于这类植物的根中并且具有抗缺氧、抗疲劳、延缓衰老、预防紫外线辐射伤害等功效。红景天甙为酪醇8-O-β-D葡萄糖甙,是酪醇在葡萄糖基转移酶UDP-glucosyltransferase (UGT) 的催化下糖基化后形成的,可以认为是酪醇在植物体内的贮存形式。酪醇作为一种重要的活性分子,同样存在于橄榄树和葡萄酒中。 虽然已经非常明确酪醇来自于莽草酸代谢途径,然而其具体的生物合成途径及其调控仍不明确。总结以往的报道,在酪醇的生物合成上主要存在两种观点:一是酪醇可能来自于苯丙烷代谢途径产生的4-香豆酸(4-coumaric acid)前体;二是来自于酪氨酸的酪胺(tyramine)可能是酪醇生物合成的直接前体。我们的工作兴趣主要围绕着鉴别高山红景天中的酪醇生物合成途径展开: 高山红景天内源苯丙氨酸解氨酶PALrs1的过表达对红景天甙积累的影响 红景天甙是来自于药用植物高山红景天的一种适应原性新型药物,其生物合成途径可能起始于苯丙氨酸或酪氨酸。由于高山红景天野生植物资源的匮乏和相对含量很低,阐明红景天甙的生物合成途径对于增加红景天甙的供给至关重要。在我们以前的工作中,运用cDNA末端快速扩增技术(RACE),一个编码苯丙氨酸解氨酶phenylalanine ammonia-lyase (PAL)的cDNA从高山红景天中被克隆,命名为PALrs1。在本研究中,PALrs1置于35S启动子+Ω增强子序列的控制下通过农杆菌(Agrobacterium tumefaciens)介导法转化回高山红景天。PCR 和 PCR–Southern blot分析结果表明,PALrs1已经整合到了转基因植物的基因组上。Northern blot杂交结果表明,PALrs1已经获得在转录水平上的高水平表达。与预期的结果相同,高效液相色谱High-performance liquid chromatography (HPLC)测定结果显示PALrs1的过表达引起4-香豆酸含量增长3.3倍。然而,与之相反的是,酪醇和红景天甙含量与对照相比反而分别下降4.7和7.7倍。此外,我们发现PALrs1的过表达造成酪氨酸含量下降2.6倍。这些数据暗示着PALrs1的过表达和4-香豆酸的积累并不能促进酪醇的生物合成。酪醇,作为一种苯乙烷类衍生物并非来自苯丙氨酸,而酪氨酸含量的下降则极有可能是酪醇生物合成和红景天甙积累大规模下降的直接原因。
Resumo:
禾谷类作物水稻和小麦是人们的主要植物性食物来源.而这些作物种子蛋白质中人类不能合成的必需氨基酸含量不平衡,造成了优质蛋白质的缺乏和人体对蛋白质利用的极大浪费.大约有二分之一的谷类种子蛋白质和四分之一的大豆蛋白质不能被合理地利用。大多数禾本科作物包括水稻和小麦的种子蛋白质中第一限制性氨基酸是赖氨酸,纠正其不平衡现象可大大提商蛋白质的营养价值。本研究在高赖氨酸植物种的筛选、高赖氨酸种子储藏蛋白质的纯化及其基因的分离等方面开展了工作。 选用与禾本科亲缘关系较远的8个植物种为研究材料,它们分别属于榛科,十字花科、胡桃科、豆科、胡麻科和松科。氨基酸组分分析确定豆科和十字花科的三个植物种赖氨酸含量在5.5%以上,其中豆科植物四棱豆(Pso phocarpus tetragonolobus)种子全蛋白赖氨酸含量达7.9%.用5种提取液提取了四棱豆种子的清蛋白、球蛋白和全蛋白。经测定发现0.025M Tris.HCl(pH7.4)提取液提取的清蛋白赖氨酸含量高最.通过自然胶电泳,SDS-PAGB电泳,非变牲IEF和变性IEF/SDS双向电泳,对四棱豆种子清蛋白进行了定性研究。用变性IEF/ SDS双向电泳分析出60多种蛋白质和蛋白质亚基及多肽。研究中改进了等电聚焦电泳纯化蛋白质的方法,经处理的胶板显现出清晰的蛋白质带型,不需染色即可确定带的位置,从切下的胶条中洗脱的蛋白质,其纯度达到双向电泳纯和HPLC纯。用三种电溶方法(SDS-PAGE非变性IEF,变性IEF)纯化出三十一种蛋白质或多肽分子。分别进行了分子量确定和氨基酸组分分析,发现了一个赖氨酸含量高达11.4%的蛋白质,其分子量为18KD,并制备了该蛋白质的抗体,测定了18KD蛋白质N端30个氨基酸残基的顺序,根据这一顺序设计合成了一组17个核苷酸的基因探针.经鉴定单链DNA探针的纯度和总量达到了设计要求。用尿素法与CTAB法结合提取了四棱豆幼苗核基因组DNA,其分子量在50Kb以上,达到了构建GenormicDNA文库的要求.用bamHI EcoRI和HindⅢ三种酶切割提取的DNA,得到了分子量大小不同的片段。 对四棱豆种子蛋白质的定性、高赖氨酸蛋白质的纯化、18KD蛋白N端序列分析及寡核苷酸探针的合成以及GcnomicDNA的提取与酶切,尚未见有资料报道.这些工作为克隆高赖氨酸基因打下了良好的基础,对改良禾本科作物蛋白质品质意义深远.
Resumo:
由于光系统Ⅱ反应中心Dl/D2/Cyt b559色素蛋白复合物(PSII-RC)的红 区吸收光谱严重重叠,给其组成特性研究及光抑制分子机理研究造成 了困难,因此我们运用多种光谱分析技术配合计算机数据处理技术对 PSII-RC复合物的组成特性进行了研究,并用自己建立的方法对PSII-RC 的色素和多肽的化学计量进行了进一步确定,另外还重点研究了单线 态氧在PSII-RC光破坏中的作用,据此提出新的PSD[-RC光抑制分子机 理。主要结果如下: 1.用反相HPLC外标法测定我们制备的色谱纯PSR-RC样品的色素化 学计量结果为Chl:Pheo:Car= 6:2:2。我们发现,当PSII-RC中存在微量CP47 时,Chl: Pheo的比例与CP47的含量呈正相关关系,说明较高的Chl比例 可能表示样品中有CP47污染。结果还表明PSII-RC中Car: Pheo的比例也与 CP47含量有关,说明CP47可影响Car在PSII-RC上的结合,这暗示CP47可 能结合Car,或者CP47对PSII-RC上Car的结合位点有影响,这一推测对阐 明CP47的功能有一定启发作用。 2.建立了一种估算PSII-RC多肽化学计量的理论计算方法,即利用计 算机统计PSII-RC中各多肽组分的不同氨基酸残基数量,以确定不同多 肽化学计量时的理论氨基酸残基组成,并与PSlI-RC的实测氨基酸残基 组成进行比较,得到所用PSII-RC样品的多肽化学计量值为D1+D2:Cyt b559-o+邮:I=2:1:1. 3.对PSII-RC的红区吸收光谱进行了高斯解析,发现680 nm附近含有 峰高和半高宽明显不同的两个高斯组分,它们对光抑制处理的响应具 有明显差别,分别表现了P680和Pheo的特征。由此可知,在680nm处除了 有P680的信号外,PSII-RC中的Pheo在这个区域也有跃迁组分。这个结果 表明光抑制进程中PSII-RC红区吸收光谱信号的下降除了P680的破坏 外,还与Pheo的破坏有关。 4.用Ste)anov关系式分析了PSII-RC色素激发态分布的平衡状态,发现 经过暗适应的PSII-RC的激发态可达到充分的平衡,光抑制处理可导致 PSIL-RC激发态平衡受到破坏。 5.用荧光发射光谱观察到PSII-RC在光抑制进程中有弱光破坏和强光 破坏两个破坏过程,前者是与色素间能量传递的色素结合状态与 取向的破坏,后者与色素本身化学结构的破坏有关。通过研究不同激发波长下的发射光谱发现Car的弱光破坏过程比Chl快,暗示Car可能的保护作用,而Pheo的破坏程度比Chl小。从发射光谱组分的光破坏时间 进程推断强光破坏过程导致的色素破坏是多步反应,验证我们小组原 先报导的PSII-RC的多步反应特性。 6.首次将磁圆二色光谱( MCD)技术应用于PSII-RC研究,发现MCD明显表现出比吸收光谱要丰富得多的光谱精细结构,同时还具有较高的灵敏度和分辨率,不经过任何解析就可直接观察到680 nm组分及其它色素组分的变化,而且PSⅡ-RC中的Car没有明显MCD信号,使PSII-RC谱 图简化,便于进一步分析。用MCD技术还观察到光抑制初期Chl从PSII- RC复合物上脱离及Pheo的光破坏现象。 7.分别用HPLC法、吸收光谱高斯解析法、荧光发射光谱分析法和MCD法共四种方法证明了PSII-RC中Pheo的光破坏,充分证实我们小组关于Pheo光破坏的报导,同时还证明Pheo的光破坏是单线态氧作用的结果。 8.给出了单线态氧参与PSII-RC色素和蛋白光破坏的直接实验证 据,即发现光抑制过程中色素和蛋白的破坏受到单线态氧的特异性清除剂的保护,用化学方法在暗中产生的单线态氧同样造成与光抑制相 似的PSII-RC各组分的损伤,由此说明单线态氧是PSII-RC光抑制过程中 的直接破坏因子。 9.提出了PSII-RC中Hiis残基光破坏的一种新的分子机理。用组氨酸残基的特异性化学修饰剂证实以前我们实验室发现的PSI[-RC组氨酸残基的光破坏,根据比较蛋白变性前后的测定结果,初步证明PSIl-RC中 受光破坏的His残基位于P680附近。我们还观察到光抑制处理后,PSII- RC表现与组氨酸残基被修饰后的样品相似的紫外吸收特征,由此提出 PSII-RC中His残基光破坏的一种分子机理,即His残基的眯唑环上的两个氮原子与其它多肽上的游离氨基在单线态氧的作用下发生反应形成酰 胺键而导致PsII-RC多肽间的共价交联,推测PSII-RC中His残基的光破坏与其蛋白的光致交联和降解有直接的因果联系。
Resumo:
应用改进DEAE-Toyopearl 650S阴离子交换柱层析从高等植物菠菜(Spinacia oleracea)中分离纯化了核心天线复合物CP43和CP47。并对它们的纯度和完整性色素种类和含量,以及色素分子的结合状态进行了研究并对色素分子间的能量传递机制进行了讨论。结果如下: 1、HPLC检测结果表明:纯化的CP43和CP47均只含Chla和β-Car两种色素分子,并且,平均每分子CP43多肽含19-20分子Chla和4-5分子β-Car;而平均每分CP47则含20-21分子Chla和3-4分子β-Car。 2、以436nm和480nm激发光激发样品得到的CP43和CP47的低温荧光发射光谱的最大荧光发射峰分别位于683nm和693nm。进一步发现,CP43和CP47,在相同条件下分别以436nm和480nm激发光激发样品得到的低温荧光发射光谱经归一化后几乎完全重叠,而且400-500nm波长范围内的激发光扫描得到的三维低温荧光发射光谱沿激发轴具有较好的对应关系,表明纯化的CP43和CP47都具有较高的完整性。 3、纯化的CP43和CP47的吸收光谱的红区最大吸收峰分别位于671nm和674nm。该光区的导数光谱均分辨出偏蓝区和偏红区两个子峰,CP43的这两个子峰分别位于669nm和682nm;而CP47的两个子峰则分别位于669nm和680nm。进一步用包含这两个子峰的高斯解析参数对红区最大吸收峰进行拟合,结果证明,拟合的曲线与实测曲线几乎完全吻合,这表明,CP43和CP47均至少包含两种不同状态的Chla分子。 3.1应用不同的变性温度处理CP43,发现随变性温度的不断提高,其红区最大吸收峰的峰值逐渐减小,四阶导数光谱分辨出的两个子峰同时减小,但差光谱显示:随处理温度的不断提高,这两个组分峰值的变化并不同步进行,较低温度范围内(55℃以下)682nm吸收峰下降明显,而较高温度范围内(55℃以上),669nm吸收峰下降明显。 同时,随处理温度不断提高CP43脱辅基蛋白的结构也在不断发生变化,其变化过程明显表现出两个跃变阶段。这两个跃变阶段分别出现在40~50℃范围内和55~60℃范围内,恰与吸收光谱两个组分峰变化的转变过程相一致。这证明,CP43中分别位于669nm和682nm的不同的色谱组分即代表两种不同结合态的Chla分子,分别简称为“CP43-669”和“CP43-682”。它们在色素蛋白复合物中所处的环境不同,因而对蛋白质结构的依赖性不同,前者更高地依赖于蛋白复合物的整体构象,而后者则主要依赖于蛋白质的二级结构。 3.2 经不同的变性温度处理的CP47,其红区最大吸收峰的峰位逐渐蓝移,而吸收峰值无明显的变化,只有当处理温度提高到65℃以后,蓝移后的吸收峰值(669nm)才开始明显减小;四阶导数光谱表现为680nm吸收峰的信号逐渐下降669nm的吸收信号逐渐明显;处理减对照差光谱只观察到680nm吸收值的逐渐减少,而几乎观察不到669nm吸收值的变化。同时,随变性温度的不断提高,CP47的脱辅基蛋白的结构也发生相应的变化与CP43不同,蛋白结构变化最大的温度范围为60℃~65℃之间,但同CP47的峰位蓝移、导数光谱中680nm信号的减小,以及差光谱中680nm吸收值的减小相一致。由此认为,同CP43一样,CP47的吸收光谱中分辨出的分别位于669nm和680nm处的两个不同光谱组分亦分别代表两种不同结合状态的Chla分子,分别简称为“CP47-669”和“CP47-680”,与CP43中的相应组分对应,它们处于不同的蛋白环境中,从而对蛋白质结构变化的依赖性不同。 3.3 CP43和CP47的CD光谱表现出明显的正负双峰,表明色素分子间存在较强的激子相互作用。随变性温度的不断提高,正负CD双峰的信号逐渐减弱,变化过程与脱辅基蛋白结构的变化以及CP43-682的变化相一致,表明色素分子间的激子相互作用更高依赖于CP43-682和CP47-680。并认为CP43-682和CP47-680可能以二聚体或多聚体的形式存在,并且二聚体或多聚体的形成依赖于蛋白天然构象。而CP43-669和CP47-669则以单体的形式位于蛋白结构中相对伸展的区域。并提出:在CP43-682以CP47-680分子之间,激发能主要以激子偶合机制进行而在CP43-669,CP47-669分子间及CP43-669至CP43-682间,CP47-669至CP47-680之间激发能则主要以Foster机制进行。 4、以488nm激发光得到的CP43和CP47的共振拉曼光谱都具有全反式构型类胡萝卜素分子的四个典型特征峰由此认为CP43和CP47中的β-Car分子亦具有全反式构型;与溶于丙酮抽体物中的β-Car分子相比较,CP43和CP47中的β-Car分子的共振拉曼光谱中具有较强的960cm~(-1)的拉曼峰,表明,CP43和CP47中的β-Car分子具有扭曲的构象。 应用经归一化后的吸收光谱与荧光激发光谱相比较的办法发现CP43和CP47中存在β-Car分子和Chla分子间的能量传递其能量传递效率分别为29.8~29.9%和52.3~56.9%。这表明,在正常条件下,CP47中β-Car分子和Chla分子间的能量传递效率远大于CP43。此外,当选用蛋白结构变化最明显的热变性温度处理样品后,发现,不论CP43还是CP47中β-Car与Chla分子间的能量传递效率大大降低,表明,这两种色素分子间的能量传递严格依赖于蛋白复合物的天然构象,并认为,正常条件下,CP43和CP47内β-Car与Chla分子间的空间距离较近,可能不大于10A,CP43和CP47相比较,CP47内这两种色素分子间的距离更近。并进一步提出,在CP43和CP47中,β-Car到Chla分子间的能量传递最大可能以Dexter的电子交换机制进行。
Resumo:
植物已经演化出多种保护其免受强光抑制和破坏的机制,从而使植物体在自然界能够应付复杂多变的光照环境。虽然人们早就确定Cyt b-559存在于PSII反应中心内,但目前对其性质与功能的认识还不充分。本工作的目的就是研究Cyt b-559天然分子特性,探讨其生理功能和存在的意义。取得了一些有新意的结果: 1、依据PSII反应中心分离纯化的原理,应用更有效的层析介质DEAE-Sephacel,我们设计了快速高效的从菠菜和水稻中分离纯化Cyt b-559的方法和流程,获得了高纯度的样品。它们在非变性胶电泳中具有相同的泳动性。蛋白组分的HPLC结果证明,纯化的Cyt b-559的确由两个亚基组成,α亚基和β亚基的分子量用我们设计的适合于分析小蛋白的Tricine—SDS—PAGE方法准确测定为9.4kDa和4.5kDa。 2、利用HPLC技术分析了纯化的Cyt b-559样品的色素组成,结果表明Cytb-559中含有Chl α而不含类胡萝卜素分子,这一结果通过吸收光谱和共振拉曼光谱的分析得到进一步地证明。通过等电聚焦方法分析了Cyt b-559的等电点,发现其亚基的等电点相差很大,全蛋白的等电点与...更多D1、D2蛋白的等电点也不相同,推测在体内生理pH条件下它们具有相反带电性而在PSII组装中发挥作用。 3、低温荧光光谱的检测结果表明,Cyt b-559的荧光发射峰位在563nm和666nm;首次证明Cyt b-559可以发出荧光和将电子传递给结合在其上的辅助叶绿素,但传递能力比较低故而导致其荧光特性与PSII反应中心的不相同。Cytb-559的紫外荧光光谱表明Trp残基位于其内部的疏水区域,证明Cyt b-559中的芳香族氨基酸可能在其功能的发挥中起一定作用。 4、通过MCD的分析,发现Cyt b-559中血红素的MCD信号在540—580nm和400—440nm波段,而且光谱形状和强度与PSII反应中心的相一致,说明PSII反应中心该范围内的MCD信号中有Cyt b-559的贡献。FTIR光谱的测定结果证明Cyt b-559血红素的配体是组氨酸,其二级结构中α-螺旋占了一半。此外,还比较了Cyt b-559和PSII反应中心的膜脂成分,发现两者有很大的相似性。不同植物来源的Cyt b-559在许多性质上都表现出高度一致,从一个侧面证明Cyt b-559在进化中的保守性。 5、PSll反应中心发生光破坏时,原初电子供体P680己受到严重破坏。我们发现,在光抑制的最初一段时间内,Cyt b-559吸收峰值发生变化:在受体侧光抑制的条件下,其吸收峰值先略有增加而后才下降,而在供体侧光抑制条件下则相反,说明 Cyt b-559对光抑制的发生非常敏感,可能在光抑制早期保护PSll反应中心。 6、纯化的Cyt b-559的组氨酸含量在照光前后没有显著的变化,说明 PSll反应中心内被破坏的组氨酸不属于Cyt b-559。PSll反应中心所含的组氨酸中有些可被DEPC修饰,但我们的实验结果表明DEPC不能修饰Cyt b-559的组氨酸。这可能有利于Cyt b-559保护功能的发挥。 7、我们观察到,在两种光抑制条件下,LP Cyt b-559光还原和 HP Cyt b-559光氧化具有对pH值的依赖性,说明Cyt b-559在光保护中的作用不仅与其高低电势态有关,而且与其质子化程度有联系。CCCP促进HP Cyt -559释放质子,从而维持循环电子传递。DCBQ和 DCMU在很低浓度时都抑制 Cyt b-559光还原,前者不影响Cyt b-559光氧化而后者在CCCP存在时也会抑制Cyt b-559光氧化。 8、Cyt b-559有定位PSll反应中心其它蛋白的锚蛋白的作用。黄化苗转绿实验证明在 HP Cyt b-559的含量增加超过 45%以后放氧活性开始逐渐增加。Cytb-559从低电势态到高电势态的转变是放氧复合物组装到PSll反应中心的关键步骤之一。在植物正常生长时,Cyt b-559与 P680的其它电于供体发生竟争,起到安全阀门的作用。 9、在逆境条件下,Cyt b-559具有保护PSll反应中心免受强光破坏而起到“分于开关”的作用。我们的实验表明,在室温条件下存在通过Cyt b-559的环式电子流,存在从氧化态LP Cyt b-559到还原态HP Cyt b-559的一个循环,其中的氧化还原变化与质子化/去质子化反应相连。通过与其它血红素蛋白的比较,我们推测 Cyt b-559“分子开关”的关键是:光抑制情况下,铁原子与远端His之间的疏水空穴被氧自由基占据后使得铁进入叶琳中央孔中,迫使近端HIS向叶琳平面位移,从而引起 Cyt b-559构象改变,使电势态发生转变。
Resumo:
本文由两部分组成,一部分是关于一组新型除草剂(K-15,K-23)的抑制特性及作用位点的研究;另一部分是关于碳酸氢盐对细胞色素b-559高电势的保护作用的研究。 在第一部分,我们首先研究了抑制剂K-23对Psn放氧活性、DCIP光还原和可变荧光等光合特性的影响。研究发现,K-23在低浓度时刺激放氧活性,而在相对高浓度时抑制放氧活性。但是,K-23在低浓度时却有效地抑制了可变荧光。这些数据表明了新型抑制剂的抑制反应是基于氧化还原作用而不是猝灭作用。此外,通过采用胰蛋白酶消化类囊体膜的方式初步检测了新型抑制剂的作用部位,其结果表明:虽然新型抑制剂抑制受体侧电子传递,但它的抑制部位与DCMU不同。 其次,研究了新型抑制剂对光系统II色素蛋白复合体与多肽组分的影响及抑制剂的键合蛋白。应用SDS-PAGE技术,发现新型抑制剂主要作用于光系统II的反应中心蛋白。用温和的Deriphat-PAGE分析也证实了新型抑制剂作用于核心复合物,导致核心复合物二聚体消失。 进一步用SDS-PAGE分析新型抑制剂对Psn多肽组分的影响,发现新型抑制剂主要影响D.、D2、CP43和CP47。用荧光发射的方法确定了K-15键合在D2蛋白上。 最后,结合荧光动力学和HPLC方法,分别从定性和定量的角度,以核心复合物以及抑制剂存在下从BBY中分离的核心复合物为研究对象,详细研究了抑制剂对QA的取代作用。研究发现,在无去垢剂或低浓度去垢剂存在情况下,由于不能创造出适合于QA存在的疏水环境,我们没有得到QA被K-15取代的实验证据。而在抑制剂K-15存在下,用2.2% HTG从BBY分离的核心复合物的实验中,检测不到正的可变荧光Fv,而是得到了降低的FM,这个结果表明QA已被抑制剂在它的作用位点处所取代。 在第二部分,研究了pH5.0—7.0范围内碳酸氢盐对Cyt b-559氧化还原状态转变的影响。首先研究了pH5.0~7.0条件下碳酸氢盐对PSII Cyt b-559还原减氧化差异吸收光谱的影响,发现铁氰化钾还原的PSII Cyt b-559 HP的含量随介质pH值的降低而减少。然而,碳酸氢盐的加入阻止了由于介质pH降低而引起的Cyt b-559由高电势向低电势的转化。比如,当样品温育在pH5.0的介质中,铁氰化钾还原的Cyt b-559 HP含量占总量的25%-30%,当介质中加入2mmol/L碳酸氢盐后Cyt b-559 HP的含量上升,占总量的50%-56%。碳酸氢盐效应对氢醌还原的Cyt b-559HP含量的影响尤为显著。pH6.5时碳酸氢盐对Cyt b-559的还原氧化状态的影响不显著。其次,分别研究了PSII经Tris处理去除锰簇和三个外周蛋白及NH20H处理去除锰簇和17 kDa和23 kDa后,碳酸氢盐对Cytb一559 HP影响的pH依赖值,发现不论在pH5.0还是pH6.5的介质中碳酸氢盐效应都不存在。 综合以上实验结果,我们认为碳酸氢盐对酸化引起的Cyt b-559氧化还原状态的影响与它和锰的作用有关,但也不能排除钙离子与碳酸氢盐之间的协同作用。
Resumo:
自发现叶黄素循环具有热耗散的作用后它被引起广泛的关注目前普遍认为叶黄素循环的色素定位于天线色素蛋白复合体上在跨膜质子梯度pH形成后玉米黄质Z和环氧玉米黄质A能够从叶绿素中吸收过多的激发能并以热能的形式耗散到体外从而保护光合器官免受强光的破坏紫黄质脱环氧化酶VDE是叶黄素循环的关键酶在较低的pH条件下它能在数分钟内将紫黄质V转变为Z和A本论文从水稻和菠菜中克隆了编码VDE酶的基因并通过转基因植物进一步研究了叶黄素循环在热耗散方面的作用主要获得了以下结果 首次从两个水稻亚种籼稻和粳稻中克隆了Rvde基因分别命名为iRvde和jRvde的全长cDNA序列分别长1647bp和1887bp两者开放阅读框的同源性为98%与其它已知vde基因的同源性在60以上推导两者均编码446个氨基酸其中转运肽序列长98个氨基酸两者成熟蛋白的氨基酸序列完全相同与已知VDE成熟蛋白的同源性在75%以上其中与小麦的同源性最高达87.4 通过PCR扩增获得了Rvde基因的核基因组DNA序列在它们的编码区中含有4个内含子其长度在jRvde中分别为105bp327bp81bp和69bp而iRvde基因的第2个内含子长425bp与jRvde的第2个内含子差别较大内含子的AT含量为6063%其两端为典型的GT/AG结构 构建了Rvde基因的原核表达载体pET-Rvde在0.4mmol/L IPTG的诱导下该基因能在大肠杆菌BL21(DE3)中大量表达SDS-PAGE和Western杂交表明表达蛋白的分子量约为 43 kDa随着IPTG诱导时间的延长蛋白量逐渐增加诱导4h后它占大肠杆菌总蛋白的25左右吸收光谱差值A502-540随反应的进行逐渐增大反应体系总色素的HPLC分析表明V逐渐降低而Z刚好相反说明表达的蛋白具有与活体VDE酶相同的功能能在体外将V转变为A和Z 从菠菜中克隆了Svde基因并构建了该基因的反义抑制植物表达载体pCB-antiSvde用根癌农杆菌介导法转化烟草获得了大量的转基因植株再生的愈伤组织经GUS染色后呈蓝色PCR扩增潮霉素抗性基因hpt和Svde基因结果显示在转基因植株T0和T1代中都分别扩增出1.0 kb和1.4 kb的目的片段而在未转化的对照植株中没有扩增转基因植株的T0代种子在潮霉素培养基上的萌发数与未萌发数的比值为3:1符合单基因的孟德尔分离规律从T1代转基因植株中筛选出抑制程度较强的一个株系A29Southern杂交结果表明外源Svde基因已整合到烟草的基因组中并且只有一个插入位点通过冻融法从该植株的类囊体中提取VDE酶其酶活性为3.2是对照植株的45.7表明VDE酶受到了抑制荧光动力学及HPLC测定结果显示强光处理后在转基因植株中Z和A的形成较少非光化学淬灭NPQ值较对照低Fv/Fm的下降较对照快表明转基因植株的热耗散能力下降进而说明叶黄素循环具有热耗散的功能 同时还建立了根癌农杆菌介导的水稻遗传转化体系并初步作了转化Svde基因的试验另外还建立了一种适合于筛选转基因植株的DNA微量提取法此方法操作快捷方便一个人在一天内能制备50多个样品100mg的植物鲜样平均可获得40µg的DNA提取的DNA可直接用于PCR反应酶切分析及Southern分析
Resumo:
从菠菜叶绿体中分离纯化出PSII内周天线CP43及CP47色素蛋白复合物。通过利用光谱学手段 (吸收光谱、荧光光谱、CD光谱等)及生化技术(HPLC和电泳等),研究了酸、碱、强光及高温等理化因子对其结构和功能的影响。结果如下: 1:酸和碱处理对CP43和CP47结构和功能的影响 1),酸、碱处理均使CP43和CP47红区主峰吸收降低,蓝区Soret带吸收降低,Soret带的附属带吸收增加,红区及蓝区吸收主峰均蓝移。酸处理时在542 nm及510 nm附近出现Pheo a的吸收峰,碱性处理时出现642 nm的吸收峰。酸、碱处理后CP43及CP47中绝大部分色素仍然结合在脱辅基蛋白上, 吸收光谱的变化源于结合态的色素而非游离色素。酸性条件下Chl a受到破坏变为Pheo a 使CP43及CP47失绿, 但Pheo a仍牢固地结合在脱辅基蛋白上,使CP43及CP47出现Pheo a的吸收峰。碱性条件下虽然绝大部分色素也结合在脱辅基蛋白上,但色素与蛋白之间的亲和力减弱,使其在进行PAGE电泳时从蛋白质上脱落。碱性条件下642 nm吸收峰的出现是OH- 与Chl a之间相互作用的结果,它需要蛋白质次级结构的变化,当蛋白质次级结构保持完整时或Chl a 分子被尿素分子包围时这种作用受到抑制。碱性条件下CP43及CP47中642 nm吸收峰的出现取决于Chl a与OH- 的相对量,同样在进行PAGE电泳时CP43中Chl a与脱辅基蛋白的分离也取决于Chl a与OH- 的相对量。 2),CP43中β-Car与Chl a之间的能量传递易于受碱的干扰,而在CP47中易于受酸的干扰。酸对CP43和CP47蛋白质次级结构的影响远小于碱的影响。酸和碱都显著地影响了Chl a分子所处的微环境并干扰了Chl a分子之间的激子相互作用。 3), 酸和碱以不同的方式影响CP43和CP47的光吸收、能量传递及蛋白质的次级结构。H+ 可以在不破坏蛋白质次级结构的情况下渗透到色素蛋白内部与Chl a反应而产生Pheo a,同时使β-Car和Chl a (或Pheo a) 之间的相对位置发生变化, 它们之间的能量传递受到干扰。OH- 首先破坏CP43和CP47中的氢键, 引起蛋白质解折叠, 使屏蔽在蛋白质内部的Chl a 暴露,进而与暴露的Chl a作用而将其皂化为叶绿素酸酯。随着蛋白质的去折叠, 其远紫外CD活性丧失, 色素所处的微环境受到干扰, β-Car和Chl a (或Chl a酸酯) 之间的相对位置发生改变, 因此β-Car和Chl a ( 或Chl a酸酯) 之间的能量传递也受到干扰。 4),酸或碱处理使CP43和CP47中Chl a 在进行HPLC时洗脱时间和洗脱峰面积发生改变, 但β-Car洗脱时间和洗脱峰的面积相对稳定。意味着酸碱处理并不破坏CP43及CP47中的β-Car。 2.强光照射对CP43结构和功能的影响 强光(1000 μmol E./m2.s)可以引起CP43中Chl a的漂白及蛋白质的降解,这种作用明显地被连二亚硫酸钠抑制。同样条件下,β-Car 的光吸收几乎不受光破坏的影响。 3.高温处理对CP43、CP47及其它PSII亚基降解的影响 用从菠菜叶片中分离出的PSII、OECC(放氧核心复合体)、去除33 kDa的OECC、RC-CP47(结合有CP47的反应中心复合体)、RC(反应中心复合体)、CP43及CP47等多亚基或单亚基色素蛋白复合体,研究这些复合体中各蛋白亚基在高温时的降解情况。结果发现PSII各蛋白亚基降解对温度的敏感性显著不同: CP43、D2、CP29、LHCII >D1、CP47 >> PsbO、PsbP、PsbQ及Cytb559 (α亚基)。
Resumo:
细胞色素b6f蛋白复合体(Cyt b6f)是光合链中连接两个光系统(PSII 和PSI)的中间电子载体蛋白复合物,其主要的生理功能是催化电子传递和质子跨膜转移,形成跨膜质子电化学梯度,为ATP的合成提供能量,在光合作用光能转化过程中占有很重要的地位。细菌和莱茵衣藻Cyt b6f的晶体结构已于2003年底获得了近原子水平的解析,但有关该复合物中两种色素(Chl a和β-Car)的生理功能及其机理尚无明确的解释。预计它们将成为今后几年的研究热点,因为揭示Cyt b6f蛋白复合体中Chl a和β-Car分子的生理功能对于进一步阐明光合作用高效转能及其调控的分子机理具十分重要的意义。鉴于目前尚未见到海洋绿藻Cyt b6f的报道,本文以海洋绿藻—假根羽藻(Bryopsis corticulans)类囊体膜上的Cyt b6f蛋白复合体为对象,对其中的类胡萝卜素的分子结构与生理功能进行了比较系统地研究。 首先,我们改进了原用于菠菜类囊体膜Cyt b6f的分离、纯化流程,在原流程的基础上增加了一次2 mol/L NaBr洗膜,彻底地去除了膜表面的杂蛋白;还调整了第二次硫酸铵分级沉淀时的饱和度,并将38-45%饱和度下的沉淀物确定为需要收集的Cyt b6f制剂。采用此改进的流程,我们首次从假根羽藻类囊体膜中分离纯化了高活性、高纯度的Cyt b6f制剂。SDS-PAGE分析的结果显示该制剂的4个多肽亚基 (Cytf 、Cyt b6 、Rieske[Fe-s]及亚基IV)的表观分子量分别为34.8、24.0、18.7和16.7 kD;Cyt b6 / f 比值接近2.0, 其纯度值为9.9 nmol cyt f/mg;其催化电子传递的活性 (C10-PQH2→PC)为73 e/s。HPLC 和共振拉曼光谱分析表明,假根羽藻Cyt b6f中的类胡萝卜素为α-胡萝卜素分子,它是一种在Cyt b6f中尚未报道过的类胡萝卜素。定量分析表明,每个假根羽藻Cyt b6f单体中全反式(all-trans)和9顺式(9-cis)α-胡萝卜素的含量分别为0.2和0.7个分子,另外还含有1.2分子的Chl a。CD光谱分析表明该9-cis-α-胡萝卜素处在一个不对称的蛋白环境中。TLC分析表明该制剂是一种缺脂的Cyt b6f蛋白复合体。 采用稳态荧光激发光谱,时间分辨吸收光谱及Chl a的光破坏实验对假根羽藻Cyt b6f中α-胡萝卜素的功能进行了研究。结果表明,Cyt b6f中α-胡萝卜素可以将它吸收的光能传递给Chl a,其能量传递效率为62.4%,提出α-胡萝卜素分子与Chl a分子之间的单线态能量传递是遵从Föster 机制进行的;α-胡萝卜素分子对Chl a分子有一定的光保护作用,这种保护作用是通过清除单线态氧来实现的。另外还发现Cyt b6f中的Chl a分子可能与其周围的氨基酸残基存在相互作用,认为这是其进行自我光保护的一种方式。 此外,还采用HPLC研究了光和暗交替对假根羽藻Cyt b6f中α-胡萝卜素构型的影响,并对假根羽藻Cyt b6f选择结合α-胡萝卜素的原因进行了初步的分析。
Resumo:
光系统I(photosystem I,PSI)是光合膜上参与光合作用原初反应过程的主要膜蛋白超分子复合体之一。高等植物的PSI是由核心复合体(14个亚基)和捕光色素蛋白复合体I(light-harvesting complex I, LHCI,含4个Lhca蛋白)组成的超分子复合体,它的主要功能是调节光诱导的从囊腔侧的质体兰素(plastocyanin,PC)向基质侧的铁氧还蛋白(ferredoxin,Fd)的电子传递。研究PSI的结构与功能对于揭示植物光合作用高效吸能、传能的分子机理具有重要意义。在本文中,我们首先建立了分离制备PSI及其亚组分的方法(Qin et al., 2007),并在此基础上对PSI在强光破坏的过程中结构与功能的变化进行了比较深入的研究。本论文的主要研究结果如下: 1.快速、高效分离纯化PSI及其亚组分方法的建立。 国际上传统的PSI分离方法(Bassi and Simpson, 1987; Croce et al., 1998; Påsllon et al.1995; Schmid et al. 2002),耗时长较长(分离PSI颗粒一般需要多于20h的蔗糖超速离心过程,而分离PSI的亚组分则需要25-60h的蔗糖超速离心过程)、得率较低,这不便于PSI方面的研究,为此我们首先改进了传统的分离纯化方法。新方法以高等植物菠菜叶片作为原材料,使用Triton X-100作为增溶剂,通过差速离心技术获得的粗制品,然后使用十二烷基麦芽糖苷(n-Dodecyl β-D-maltoside, DDM)增溶PSI粗制品,之后采用100,000×g,垂直转头(Beckman VTi 50)0.1-1 mol/L蔗糖梯度离心3h获得纯度较高的PSI颗粒。然后使用DDM和3-(N, N-Dimethylpalmitylammonio) propanesulfonate (zw 3-16)两种增溶剂处理PSI,后经100,000×g,垂直转头(Beckman VTi 50)蔗糖梯度离心4h获得纯度较高的PSI core、LHCI-680、LHCI-730复合体。采用吸收光谱、荧光光谱技术研究了各样品的基本光谱学特性,采用HPLC分析了各样品的色素组成,结果显示平均每个Lhca蛋白结合1.5-1.6黄体素,1.0紫黄质, 0.8-1.1 β-胡萝卜素,该方法制备的LHCI比传统方法制备的LHCI减少了类胡萝卜素的丢失。这一工作为以后结构与功能的研究工作奠定了良好的基础。 2.PSI复合体及其亚组分的特性研究。 PSI颗粒具有一定的适应环境酸碱变化的能力,在我们的试验条件下PSI颗粒在pH 5-10相对稳定。PSI、LHCI很难通过加入Mg2+、Ca2+、Na+阳离子聚集沉淀。经绿胶鉴定我们制备的LHCI-680、LHCI-730是二聚体形式;而把PSI绿胶后再进行第二向十二烷基硫酸钠-聚丙烯酰氨凝胶电泳(SDS-PAGE)电泳,结果发现在稍强烈的绿胶增溶条件下,LHCI-730是以二聚体的形式存在,但是LHCI-680却是以单体的形式出现。这说明LHCI形成的二聚体,尤其是LHCI-680,较容易受到增溶处理而分离成单体形式,解释了以生化分离手段得到的LHCI-680的聚集形式是单体还是二聚体这个目前国际上还有有争议的问题。 3.PSI、LHCI光破坏的基本特点。 采用白光(2500 μmol•m-2•s-1)照射PSI颗粒,通过SDS-PAGE及室温吸收光谱检测光照过程中PSI复合体的变化,结果表明:去氧处理能够大大延缓PSI的光破坏,而PSI脱辅基蛋白不会发生光破坏,这说明PSI发生的光破坏可能与Chl与O2的相互作用有关。采用白光(1000 μmol•m-2•s-1、300 μmol•m-2•s-1)处理LHCI-680、LHCI-730,发现LHCI-680被破坏的速度明显快于LHCI-730被破坏的速度,这是首次在体外分离的水平上揭示了不同LHCI光破坏方面的差异。LHCI-680与LHCI-730在光破坏方面的差异可能与两种天线蛋白结合的类胡萝卜素的种类和数量不同有关,还可能与二者结合的长波长Chl的情况有关,但是具体的原因还有待于进一步的研究。 4.结合不同的捕光色素蛋白复合体(light-harvesting complex,LHC)对PSI光破坏的影响。 为了研究结合不同的捕光天线对PSI光破坏的影响,我们制备了PSI-LHCII、PSI、PSI core三种复合体。使用白光(2500 μmol•m-2•s-1)照射这三种复合体,并通过测定各复合体在光破坏过程中蛋白亚基、吸收光谱、PSI活性及P700含量的变化,对比三者光破坏的速度,结果发现PSI-LHCII在这三种复合体中光破坏速度最快,而PSI和PSI core两种复合体光破坏速度基本一致。我们推测在光照过程中部分光系统II捕光Chl a/b蛋白复合体II(light-harvesting complex II,LHCII)能够向PSI core传递能量,另外PSI-LHCII绿胶分析的结果表明发生了LHCII三聚体向单体的转变,这种强光下发生的LHCII聚合形式的转化可能是高光强下调节光能捕获的一种机制,由于植物体内具有较完整的保护系统,体内PSI-LHCII的光破坏可能与体外情况不同;另外LHCI与PSI core的解离可能发生在强光照射的早期,具有保护PSI core减少光破坏的积极作用。该部分的研究首次观察了结合不同的捕光天线对PSI光破坏的影响。