520 resultados para GADOLINIA-DOPED CERIA


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The magnetic interactions in Ni-doped ZnO are calculated using GGA and GGA + U method of density functional theory. The following three cases: (i) Ni-doped ZnO, (ii) (Ni, Al)-codoped ZnO, and (iii) (Ni, Li)-codoped ZnO are studied. The ferromagnetic ordering is always favorable for the three cases within GGA method. However, the ferromagnetic state is sometimes favorable after treating within the method of GGA + U. The GGA underestimates the correlated interactions especially when the Ni ions align directly to each other. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Yb3+ heavy-doped yttrium lanthanum oxide transparent ceramics were fabricated and their spectroscopic properties were investigated. The absorption bands of (YbxY0.9-xLa0.1)(2)O-3 (x = 0.05-0.15) ceramics are broad at wavelength of 900-1000 nm. The absorption cross-sections centered at 974 nm and the emission cross-sections at 1031 nm of Yb3+ ion are 0.89-1.12 x 10(-20) cm(2) and 1.05 x 10(-20) cm(2) respectively. The up-conversion luminescence intensity of Yb3+-doped yttrium lanthanum oxide ceramics increased firstly, then decreased with the increase of Yb3+ ion content. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using first-principles band structure methods, we have systematically studied the electronic structures, magnetic stabilities, and half-metal properties of 3d transition-metal (TM) doped Rocksalt MgO compounds TMMg3O4 (TM = V, Cr, Mn, Fe, Co, and Ni). The calculations reveal that only CrMg3O4 has a ferromagnetic stability among the six compounds, which is explained by double-exchange mechanism. The magnetic stability is affected by the doping concentration of TM if the top valance band is composed of partially occupied t(2g) states. In addition, CrMg3O4 is a half-metallic ferromagnet. The origins of half-metallic and ferromagnetic properties are explored. The Curie temperature (T-c) of CrMg3O4 is 182 K. And it is hard for CrMg3O4 to deform due to the large bulk modulus and shear modulus, so it is a promising spintronic material. Our calculations provide the first available information on the magnetic properties of 3d TM-doped MgO.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ga1-xMnxAs films with exceptionally high saturation magnetizations of approximate to 100 emu/cm(3) corresponding to effective Mn concentrations of x(eff)approximate to 0.10 still have a Curie temperature T-C smaller than 195 K contradicting mean-field predictions. The analysis of the critical exponent beta of the remnant magnetization-beta = 0.407(5)-in the framework of the models for disordered/amorphous ferromagnets suggests that this limit on T-C is intrinsic and due to the short range of the ferromagnetic interactions resulting from the small mean-free path of the holes. This result questions the perspective of room-temperature ferromagnetism in highly doped GaMnAs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present work, an infrared light-emitting diode is used to photodope molecular-beam-epitaxy-grown Si: Al0.3Ga0.7As, a well-known persistent photoconductor, to vary the effective electron concentration of samples in situ. Using this technique, we examine the transport properties of two samples containing different nominal doping concentrations of Si [1 x 10(19) cm(-3) for sample 1 (S1) and 9 x 10(17) cm(-3) for sample 2 (S2)] and vary the effective electron density between 10(14) and 10(18) cm(-3). The metal-insulator transition for S1 is found to occur at a critical carrier concentration of 5.7 x 10(16) cm(-3) at 350 mK. The mobilities in both samples are found to be limited by ionized impurity scattering in the temperature range probed, and are adequately described by the Brooks-Herring screening theory for higher carrier densities. The shape of the band tail of the density of states in Al0.3Ga0.7As is found electrically through transport measurements. It is determined to have a power-law dependence, with an exponent of -1.25 for S1 and -1.38 for S2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cupric iodide is a p-type semiconductor and has a large band gap. Doping of Mn, Co, and Ni are found to make gamma-CuI ferromagnetic ground state, while Cr-doped and Fe-doped CuI systems are stabilized in antiferromagnetic configurations. The origins of the magnetic ordering are demonstrated successfully by the phenomenological band coupling model based on d-d level repulsions between the dopant ions. Furthermore, using a molecular-orbital bonding model, the electronic structures of the doped CuI are well understood. According to Heisenberg model, high-T-C may be expected for CuI:Mn and CuI:Ni if there are no native defects or other impurities.