361 resultados para voltammetry of microparticles


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Through layer-by-layer assembly, undecatungstozincates monosubstituted by transition metals Mn, ZnW11 Mn (H2O) O-39(8-) was successfully immobilized on a glassy carbon electrode surface grafted covalently by 4-aminobenzoic acid. The electrochemical behavior of these polyoxometalates was investigated. Cyclic voltammetry proves the uniform growth of the film. They exhibit some special electrochemical properties in the films, different from those in homogeneous aqueous solution. The effect of pH on the redox behavior of ZnW11Mn(H2O)O-39(8-) in the film was discussed in detail. The multilayer film electrodes have an excellent electrocatalytic response to the reduction of H2O2 and BrO3-, and to the oxidation of ascorbic acid.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel method for fabrication of nanometer-sized electrodes and tips suitable for scanning electrochemical microscopy (SECM) is reported. A fine etched Pt wire is coated with polyimide, which was produced by polymerization on the Pt surface initiated by heat. This method can prepare electrodes with effective radii varying from a few to hundreds of nanometers. Scanning electron microscopy, cyclic voltammetry, and SECM were used to characterize these electrodes. Well-defined steady-state voltammograms could be obtained in aqueous or in 1,2-dichloroethane solutions. Ibis method produced the nanoelectrodes with exposed Pit on the apex, and they can also be employed as the nanotips for SECM investigations. Different sizes of Pt nanotips made by this method were employed to evaluate the kinetics of the redox reaction of Ru(NH3)6(3+) on the surface of a large Pt electrode by SECM, and the standard rate constant kappa (o) of this system was calculated from the best fit of the SECM approach curve. This result is similar to the values obtained by analysis of the obtained voltammetric data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A simple route to the fabrication of multilayer films containing Pd nanoparticles is described. Following layer-by-layer assembly of PdCl42- and polycation, QPVP-Os (a quaternized poly(4-vinylpyridine) complexed with [Os(bpy)(2)Cl](2+/+)), on 4-aminobenzoic acid-modified glassy carbon electrodes, the three-dimensional Pd nanoparticle multilayer films are directly formed on electrode surfaces via electrochemical reduction of PdCl42- sandwiched between polymers. The growth of PdCl42- is easy on electrode surfaces by electrostatic interaction, and the assembly processes are monitored by cyclic voltammetry and UV-vis spectroscopy. The depth profile analyses by X-ray photoelectron spectroscopy verify the constant composition of the Pd nanoparticle multilayer films. Atomic force microscopy proves that the as-prepared Pd nanoparticles are uniformly distributed with an average particle diameter of 3-7 mn. The resulting Pd nanoparticle multilayer-modified electrode possesses high catalytic activity for the reduction of dissolved oxygen and oxidation of hydrazine compounds in aqueous solution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ferricyanide anion has usually been used as a marker of ion-channel sensors. In this work we first found that ferricyanide, itself, can act as a stimulus to regulate the permeability of sBLM prepared from didodecyldimethylammonium bromide (a kind of synthetic lipid) on a GC electrode. We used cyclic voltammetry and a.c. impedance to investigate this phenomenon. The interaction between sBLM and ferricyanide concerns time. Furthermore, we developed a sensor for ferricyanide anion. The ion-channel sensor is highly sensitive. It can detect ferricyanide concentration as low as 5 muM.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A stable lipid cast film was made by casting a lipid in chloroform onto a glassy carbon electrode. We imbedded a new mediator norepinephrine into this lipid cast film, which was considered as a biological membrane model. Through electro catalytic oxidation of ascorbic acid by this system, the anodic overpotential was reduced by about 250 mV compared with that obtained at a bare glassy carbon electrode. The electrochemical behavior of norepinephrine in the cast film was controlled by diffusion. The obtained diffusion coefficient of ascorbic acid was 1.87 x 10(-5) cm 2 s(-1). The catalytic current increased linearly with the concentration of ascorbic acid in the range from 0.5 to 10 mM. Using cyclic voltammetry, we obtained two peaks for ascorbic acid and uric acid in the same solution. The separation between the two peaks is about 147 mV. (C) 2001 Elsevier Science Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

1,7-Diaminoheptane (DAH) had been covalently grafted on glassy carbon electrode by amino cation radical formation, which resulted in a stable cationic monolayer under proper pH conditions. Dawson-type tungstodiphosphate anion, P2W18O626- and small molecule, Ru(NH3)(6)(3+) were alternately assembled on the DAH modified electrode through layer-by-layer electrostatic interaction. Thus-prepared multilayer film had been characterized by cyclic voltammetry and X-ray photoelectron spectroscopy. The P2W18O626- multilayers exhibit high electrocatalytic response and sensitivity towards the reduction of iodate. With the increase of the number of P2W18O626- the catalytic current was enhanced and the catalytic potential shifted positively. Iodate in table salt was determined at the modified electrode containing three layers of P2W18O626- with satisfactory results. The multilayer electrode is promising as an electrochemical sensor for the detection of trace iodate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electrooxidation of vitamin D-2 (VD2) was studied by cyclic voltammetry and in situ circular dichroic (CD) spectroelectrochemistry for the first time, The mechanism of electrooxidation and some useful kinetic and adsorption parameters were obtained. The results showed that the oxidation of VD2 in ethanol solution is an irreversible diffusion controlled process following a weak adsorption of the electroinactive product at a glassy carbon electrode, which blocks the electrochemical reaction. The electrooxidation occurs mainly at the triene moieties of the VD2 molecule. The CD spectroelectrochemical data were treated by the double logarithm method together with nonlinear regression, from which the formal potential E-0 = 1.08 V, alphan = 0.245, the standard electrochemical rate constant k(0) = 4.30( +/- 0.58) x 10(-4) cm s(-1) and the adsorption constant beta = 1.77(+/- 0.25) were obtained. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Antibody was covalently immobilized by amine coupling method to gold surfaces modified with a self-assembled monolayer of thioctic acid. The electrochemical measurements of cyclic voltammetry and impedance spectroscopy showed that the hexacyanoferrate redox reactions on the gold surface were blocked due to the procedures of self-assembly of thioctic acid and antibody immobilization. The binding of a specific antigen to antibody recognition layer could be detected by measurements of the impedance change. A new amplification strategy was introduced for improving the sensitivity of impedance measurements using biotin labeled protein- streptavidin network complex. This amplification strategy is based on the construction of a molecular complex between streptavidin and biotin labeled protein. This complex can be formed in a cross-linking network of molecules so that the amplification of response signal will be realized due to the big molecular size of complex. The results show that this amplification strategy causes dramatic improvement of the detection sensitivity of hIgG and has good correlation for detection of hIgG in the range of 2-10 mug/ml. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Manganous hexacyanoferrate (MnHCF) supported on graphite powder was dispersed into methyltrimethoxysilane-derived gels to yield a conductive composite, which was used as electrode material to construct a renewable three-dimensional MnHCF-modifed electrode. MnHCF acts as a catalyst, graphite powder ensures conductivity by percolation, the silicate provides a rigid porous backbone, and the methyl groups endow hydrophobicity and thus limit the wetting section of the modified electrode. Cyclic voltammetry was exploited to investigate the dependence of electrochemical behavior on supporting electrolytes containing various cations. The chemically modified electrode can electrocatalytically oxidize L-cysteine, and exhibits a distinct advantage of polishing in the event of surface fouling, as well as simple preparation, good chemical and mechanical stability, and good repeatability of surface renewal.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Monolayer assembly of 2-mercapto-3-n-octylthiophene (MOT) having a relatively large headgroup onto gold surface from its dilute ethanolic solutions has been investigated by electrochemistry. An electrochemical capacitance measurement on the permeability of the monolayer to aqueous ions, as compared with its alkanethiol counterpart [CH3(CH2)(9)SH (DT)] with a similar molecular length, shows that the self-assembled monolayers (SAMs) of MOT can be penetrated by aqueous ions to some extent. Furthermore, organic molecular probes, such as dopamine, can sufficiently diffuse into the monolayer because a diffusion-limited current peak is observed when the dopamine oxidation reaction takes place, showing that the monolayer is loosely packed or dominated by defects. But the results of electron transfer to aqueous redox probes (including voltammetry in Fe(CN)(6)(3-/4-) solutions and electrochemical ac impedance spectrum) confirm that the monolayer can passivate the gold electrode surface effectively for its very low ratio of pinhole defects. Moreover, a heterogeneous patching process involving addition of the surfactants into the SAMs provides a mixed or hybrid membrane that has superior passivating properties. These studies show that the MOT monolayer on the electrode can provide an excellent barrier for hydrated ionic probe penetration but cannot resist the organic species penetration effectively. The unusual properties of the SAMs are attributed to the entity of the relatively large thiophene moiety between the carbon chain and the thiol group.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of organic solvents on the electrochemical behavior of the soluble polyimide(PI) was studied by using cyclic voltammetry. It was found that PI can undergo electrochemical reaction in some solvents, while the electrochemical response can not be observed in other solvents. The results of IR spectra indicate that the effect of the solvents on the electrochemical behavior of PI is due to the different interactions between PI and the solvent.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The thickness of the gold film and its morphology, including the surface roughness, are very important for getting a good, reproducible response in the SPR technique. Here, we report a novel alternative approach for preparing SPR-active substrates that is completely solution-based. Our strategy is based on self-assembly of the gold colloid monolayer on a (3-aminopropyl)trimethoxysilane-modified glass slide, followed by electroless gold plating. Using this method, the thickness of films can be easily controlled at the nanometer scale by setting the plating time in the same conditions. Surface roughness and morphology of gold films can be modified by both tuning the size of gold nanoparticles and agitation during the plating. Surface evolution of the Au film was followed in real time by UV-vis spectroscopy and in situ SPRS. To assess the surface roughness and electrochemical stability of the Au films, atomic force microscopy and cyclic voltammetry were used. In addition, the stability of the gold adhesion is demonstrated by three methods. The as-prepared Au films on substrates are reproducible and stable, which allows them to be used as electrodes for electrochemical experiments and as platforms for studying SAMs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel glucose biosensor based on capacitive detection has been developed using molecularly imprinted polymers. The sensitive layer was prepared by electropolymerization of o-phenylenediamine on a gold electrode in the presence of the template (glucose). Cyclic voltammetry and capacitive measurements monitored the process of electropolymerization. Surface uncovered areas were plugged with 1-dodecanethiol to make the layer dense, and the insulating properties of the layer were studied in the presence of redox couples. The template molecules and the nonbound thiol were removed from the modified electrode surface by washing with distilled water. A capacitance decrease could be obtained after injection of glucose. The electrode constructed similarly but with ascorbic acid or fructose only showed a small response compared with glucose. The stability and reproducibility of the biosensor were also investigated. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The characterization of free base porphyrin 2,3,7,8,12,13,17,18-octakis(hexyl-thio) tetraazaporphyrin (H(2)OHTTAP) and its zinc(II) complexes [Zn(II)OHTTAP] containing eight thioether groups at the beta -pyrrole positions of the macrocycle was reported. Results obtained by cyclic voltammetry and differential pulse voltammetry indicated a five-electron reduction in five steps for each complex. They were oxidized in two single-electron-transfer steps to yield pi -cation radicals and dications and reduced in three single-electron-transfer steps to yield pi -anion radicals, dianions and trianions, respectively. The redox property of H(2)OHTTAP was unusual as compared to porphyrins (PPs) and phthalocyanines (Pcs). Each process was monitored by in situ thin-layer spectroelectrochemistry, which indicated that only the Ligand was electroactive. The existence of the eight hexylthio groups was responsible for the intrastack interactions and enhanced intracolumnar and intercolumnar electron motions, resulting in improved conductivity. Copyright (C) 2001 John Wiley & Sons, Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we describe a simple procedure to make agar-gel microelectrodes by filling micropipettes. These microelectrodes were used to study K+ transfer across the agar-water \ 1,2-dichloroethane interface facilitated by dibenzo-18-crown-6 (DB18C6), and the transfer of tetraethylammonium (TEA(+)). The results observed were similar to those obtained at micro-liquid \ liquid interfaces. The effect of various amounts of agar in the aqueous phase was optimized and 3% agar was chosen based on the potential window and solidification time. The different shapes of micro-agar-gel electrodes were prepared in a similar way. The fabricated agar-gel microelectrodes obey the classical micro-disk steady-state current equation, which is different from the behavior of a normal micropipette filled with aqueous solution without silanization. (C) 2001 Elsevier Science B.V. All rights reserved.