307 resultados para damage threshold
Resumo:
Biological soil crusts are important in reversing desertification. Ultraviolet radiation, however, may be detrimental for the development of soil crusts. The cyanobacterium Microcoleus vaginatus can be a dominant species occurring in desert soil crusts all over the world. To investigate the physico-chemical consequences of ultraviolet-B radiation on M. vaginatus, eight parameters including the contents of chlorophyll a, reactive oxygen species, malondialdehyde and proline, as well as the activities of photosynthesis, superoxide dismutase (EC 1.15.1.1), peroxiclase (EC 1.11.1.7) and catalase (EC 1.11.1.6) were determined. As shown by the results of determinations, ultraviolet-B radiation caused decreases both in contents of chlorophyll a and in ratios of variable fluorescence over maximum fluorescence that indicate the growth and photosynthesis of M. vaginatus, besides, increases both in levels of reactive oxygen species and in contents of malondialdehyde and proline, while intensified activities of superoxide dismutase, peroxiclase and catalase reflecting the abilities of enzymatic preventive substances to oxidative stress of the treated cells. Therefore, ultraviolet-B radiation affects the growth of M. vaginatus and leads to oxidative stress in cells. Under ultraviolet-B radiation, the treated cells can improve their antioxidant abilities to alleviate oxidative injury. The change trends of reactive oxygen species, superoxide dismutase, peroxiclase and catalase are synchronous. These results suggest that a balance between the antioxidant system and the reactive oxygen species content may be one part of a complex stress response pathway in which multiple environmental factors including ultraviolet-B radiation affect the Survival of M. vaginatus. (C) 2009 Elsevier Masson SAS. All rights reserved.
Resumo:
Hepatotoxic microcystins (MCs) are the most commonly reported cyanotoxins in eutrophic freshwaters. In 1996, human intoxications by MCs caused deaths of 76 patients at Caruaru dialysis centers in Brazil. So far, there have been no direct evidences of MC occurrence in human tissue in consequence of exposure to MC. In this study, we improved cleanup procedures for detecting MCs in serum sample using liquid chromatographymass spectrometry, and confirmed for the first time the presence of MCs in serum samples (average 0.39 ng/ml, which amounts to ca. 1/87 of the concentrations found in tissue samples of the Caruaru victims) of fishermen at Lake Chaohu. Daily intake by the fishermen was estimated to be in the range of 2.2-3.9 mu g MC-LReq, whereas the provisional World Health Organization tolerable daily intake (TDI) for daily lifetime exposure is 0.04 mu g/kg or 2-3 mu g per person. Moreover, statistical analysis showed closer positive relationships between MC serum concentrations and concentrations of alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, and lactate dehydrogenase than between the MC concentrations and other biochemical indicators. Thus, the data raise the question whether extended exposure in the range of the TDI or up to a factor of 10 above it may already lead to indication of liver damage. The results also demonstrate a risk of health effects from chronic exposure to MCs at least for populations with high levels of exposure, like these fishermen.
Resumo:
UV-B-induced oxidative damage and the protective effect of exopolysaccharides (EPS) in Microcoleus vaginatus, a cyanobacterium isolated from desert crust, were investigated. After being irradiated with UV-B radiation, photosynthetic activity (Fv/Fm), cellular total carbohydrates, EPS and sucrose production of irradiated cells decreased, while reducing sugars, reactive oxygen species (ROS) generation, malondialdehyde (MDA) production and DNA strand breaks increased significantly. However, when pretreated with 100 mg/L exogenous EPS, EPS production in the culture medium of UV-B stressed cells decreased significantly; Fv/Fm, cellular total carbohydrates, reducing sugars and sucrose synthase (SS) activity of irradiated cells increased significantly, while ROS generation, MDA production and DNA strand breaks of irradiated cells decreased significantly. The results suggested that EPS exhibited a significant protective effect on DNA strand breaks and lipid peroxidation by effectively eliminating ROS induced by UV-B radiation in M. vaginatus.
Resumo:
Field and experimental studies were conducted to investigate pathological characterizations and biochemical responses in the liver and kidney of the phytoplanktivorous bighead carp after intraperitoneal (i.p.) administration of microcystins (MCs) and exposure to natural cyanobacterial blooms in Meiliang Bay, Lake Taihu. Bighead carp in field and laboratory studies showed a progressive recovery of structure and function in terms of histological, cellular, and biochemical features. In laboratory study, when fish were i.p. injected with extracted MCs at the doses of 200 and 500 mu g MC- LReq/kg body weight, respectively, liver pathology in bighead carp was observed in a time dose-dependent manner within 24 h postinjection and characterized by disruption of liver structure, condensed cytoplasm, and the appearance of massive hepatocytes with karyopyknosis, karyorrhexis, and karyolysis. In comparison with previous studies on other fish, bighead carp in field study endured higher MC doses and longer-term exposure, but displayed less damage in the liver and kidney. Ultrastructural examination in the liver revealed the presence of lysosome proliferation, suggesting that bighead carp might eliminate or lessen cell damage caused by MCs through lysosome activation. Biochemically, sensitive responses in the antioxidant enzymes and higher basal glutathione concentrations might be responsible for their powerful resistance to MCs, suggesting that bighead carp can be used as biomanipulation fish to counteract cyanotoxin contamination.
Resumo:
In the present study, female Chinese rare minnows (Gobiocypris rarus) were used as in vivo models and exposed to nonylphenol (NP) at concentrations of 1 to 200 mu g/L for 21 d under semistatic conditions. Molecular biomarkers of oxidative stress were measured in unfertilized eggs and included reactive oxygen species (ROS), lipid peroxidation products (thiobarbituric acid-reactive substances [TBARS] and protein carbonyl), superoxide dismutase activity, and glutathione. Cathepsin D activity as an indicator of egg viability also was assayed. Nonylphenol induced ROS formation in unfertilized eggs in all exposed groups compared to the controls. The levels of protein carbonyl and TBARS in unfertilized eggs were significantly increased (p < 0.05) at 10 to 200 and 100 to 200 mu g/L, respectively. Good positive correlations were shown between ROS induction and levels of TBARS and protein carbonyl in eggs (R = 0.918, p < 0.05 and R = 0.784, p < 0.05, respectively). Superoxide dismutase activity in eggs was significantly inhibited (p < 0.05) in the 50 to 200 mu g/L exposure groups. Glutathione levels in eggs were significantly depleted (p < 0.05) at 100 to 200 mu g/L concentrations. In addition, ROS induction resulted in oxidative damage to lipid and protein in chorions. Significant reductions (p < 0.05) of the protein and lipid contents in chorions were both found in the 50 to 200 mu g/L exposure groups. A previous study found that NP exposure could lead to chorion thinning in zebra fish. Thus, the reductions in protein and lipid contents in chorion could be the reason for chorion thinning by NP exposure. Meanwhile, cathepsin D activity was significantly inhibited (p < 0.05) in all exposure groups. The results demonstrated that NP-induced oxidative stress could damage the chorion of unfertilized eggs and lead to a decline in gamete quality in female Chinese rare minnow.
Resumo:
We have fabricated and characterized GaN-based vertical cavity surface emitting lasers (VCSELs) with a unique active region structure, in which three sets of InGaN asymmetric coupled quantum wells are placed in a half-wavelength (0.5 lambda) length. Lasing action was achieved under optical pumping at room temperature with a threshold pumping energy density of about 6.5 mJ/cm(2). The laser emitted a blue light at 449.5 nm with a narrow linewidth below 0.1 nm and had a high spontaneous emission factor of about 3.0x10(-2). The results indicate that this active region structure is useful in reducing the process difficulties and improving the threshold characteristics of GaN-based VCSELs.
Resumo:
Very low threshold current density InGaAs/ GaAs quantum well laser diodes grown by molecular beam epitaxy on InGaAs metamorphic buffers are reported. The lasing wavelength of the ridge waveguide laser diode with cavity length of 1200 mm is centred at 1337.2 nm; the threshold current density is 205 A/cm(2) at room temperature under continuous-wave operation.
Resumo:
This paper presents a fully integrated CMOS analog front end for a passive 900-MHz radio-frequency identification (RFID) transponder. The power supply in this front end is generated from the received RF electromagnetic energy by using an RF-dc voltage rectifier. In order to improve the compatibility with standard CMOS technology, Schottky diodes in conventional RF-dc rectifiers are replaced by diode-connected MOS transistors with zero threshold. Meanwhile, theoretical analyses for the proposed rectifier are provided and verified by both simulation and measurement results. The design considerations of the pulsewidth-modulation (PWM) demodulator and the backscatter modulator in the front end are also discussed for low-power applications. The proposed front end is implemented in a 0.35-mu m 2P4M CMOS technology. The whole chip occupies a die area of 490 x 780 mu m(2) and consumes only 2.1 mu W in reading mode under a self-generated 1.5-V supply voltage. The measurement results show that the proposed rectifier can properly operate with a - 14.7-dBm input RF power at a power conversion efficiency of 13.0%. In the proposed RFID applications, this sensitivity corresponds to 10.88-m communication distance at 4-W equivalent isotropically radiated power from a reader base station.
Resumo:
Erbium was implanted with energies 200 or 400 keV into epitaxial (0 0 0 1) GaN grown on (0 0 0 1) Al2O3 substrate at room temperature (RT) and 400degreesC. Both random (10degrees tilt from c-axis) and channeled (along c-axis) implantations were studied. RBS/Channeling technique was used to study the dependences of the radiation damage with ion implantation energy, direction and temperature. It was found that the channeling implantation or elevating temperature implantation both resulted in the decrease of the damage. Moreover, the Photoluminscence (PL) properties of Er-implanted GaN thin filius were also studied. The experimental results indicate that the PL intensity can be enhanced by raising implantation energy or implanting along channeling direction. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
1.5 mu m. n-type modulation-doping InGaAsP/InGaAsP strained multiple quantum wells grown by low pressure metalorganic chemistry vapor decomposition technology is reported for the first time in the world. N-type modulation-doped lasers exhibit much lower threshold current densities than conventional lasers with undoped barrier layers. The lowest threshold current density we obtained was 1052.5 A/cm(2) for 1000 mu m long lasers with seven quantum wells. The estimated threshold current density for an infinite cavity length was 94.72A/cm(2)/well, reduced by 23.3% compared with undoped barrier lasers. The n-type modulation doping effects on the lasing characteristics in 1.5 mu m devices have been demonstrated.