226 resultados para Paper Electrophoresis
Resumo:
A microchip electrophoresis method coupled with laser-induced fluorescence (LIF) detection was established for simultaneous determination of two kinds of intracellular signaling molecules (reactive oxygen species, ROS, and reduced glutathione, GSH) related to apoptosis and oxidative stress. As the probe dihydrorhodamine-123 (DHR123) can be converted intracellularly by ROS to the fluorescent rhodamine-123 (Rh123), and the probe naphthalene-2,3-dicarboxaldehyde (NDA) can react quickly with GSH to produce a fluorescent adduct, rapid determination of Rh-123 and GSH was achieved on a glass microchip within 27 s using a 20 mm borate buffer (pH 9.2). The established method was tested to measure the intracellular ROS and GSH levels in acute promyelocytic leukemia (APL)-derived NB4 cells. An elevation of intracellular ROS and depletion of GSH were observed in apoptotic N134 cells induced by arsenic trioxide (AS(2)O(3)) at low concentration (1-2 mu m). Buthionine sulfoximine (BSO), in combination with AS(2)O(3) enhanced the decrease of reduced GSH to a great extent. The combined treatment of AS(2)O(3) and hydrogen peroxide (H2O2) led to an inverse relationship between the concentrations of ROS and GSH obtained, showing the proposed method can readily evaluate the generation of ROS, which occurs simultaneously with the consumption of the inherent antioxidant.
Resumo:
The interactions between granulocyte-colony stimulating factor (G-CSF) and dextran sulfate/kappa-carrageenan oligosaccharide were studied by capillary zone electrophoresis. Dextran sulfate could strongly interact with G-CSF and the complex was detected. The binding constant and stoichiometry were determined to be 1.2x10(6) (mol/L)(-1) and 3:1, respectively. However, the interaction between K-carrageenan oligosaccharide and G-CSF was not found.
Resumo:
A method based on capillary zone electrophoresis (CZE) was used to study the interaction between low molecular weight heparin (LMWH) and interleukin 2 (IL-2). The results showed that the increase of the concentration of LMWH led to the decrease of the peak height and the increase of the peak width of IL-2, but the peak areas were kept constant. The binding constant of IL-2 with LMWH was calculated as 1.2 x 10(6) M(-1) by Scatchard analysis, which is in good agreement with the results found in the references using enzyme-linked immunosorbent assay (ELISA). The results demonstrated that the interaction between IL-2 and LMWH is of fast on-and-off kinetic binding reaction. CZE might be used to study not only slow on-and-off rates interactions, but also fast on-and-off rates ones. The binding constant can be calculated easily, and the method can be applied to study a wide range of heparin-protein interactions. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
An accurate capillary electrophoresis method was developed for the determination of dissociation constants of five Strychnos alkaloids from Strychnos nux-vomica L. The method relies on measuring the effective mobility of the solute as a function of the buffer pH. The mathematical relationship was strictly derived from the fundamental electrophoresis theory and the dissociation equilibrium of a weak base without any simplifications. Careful optimization of the running buffer permitted base-line resolution of the five structurally similar alkaloids.
Resumo:
A novel fluorescence detector based on collinear scheme using a brightness light-emitting diode emitting at 470 nm as excitation source is described. The detector is assembled by all-solid-state optical-electronic components and Coupled with capillary electrophoresis using on-column detection mode. Fluorescein isothiocyanate (FITC) and FITC-labeled amino acids and small molecule peptide as test analyte were used to evaluate the detector. The concentration limit of detection for FITC-labeled phenylalanine was 10 nM at a signal-to-noise ratio (S/N) of 3. The system exhibited good linear responses in the range of 1 x 10(-7) to 2 x 10(-5) M (R-2 = 0.999). (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
The major components of the plant curcuma longa are the curcuminoids that include curcumin, demethoxycurcumin and bisdemethoxycurcumin. It has been reported the curcuminoids have some important activities. A new CZE method with diode array detection has been developed for the separation and determination of the curcumin, demethoxycurcumin and bisdemethoxycurcumin. Three curcuminoids could be readily separated within 7 min with a 15 mM sodium tetraborate buffer containing 10% methanol (v/v) at pH 10.8, 25 kV and 30 degrees C. The method has been validated and shows good performance with respect to selectivity, reproducibility, linearity, limits of detection and recovery. The proposed method was successfully applied to determine the curcuminoids in urine. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
Molecular diagnosis is playing an increasingly important role in the rapid detection and identification of pathogenic organisms in clinical samples. The genetic variation of ribosomal genes in bacteria offers an alternative to culturing for the detection and identification of these organisms. Here 16S rRNA and 16S-23S rRNA spacer region genes were chosen as the amplified targets for single-strand conformation polymorphism (SSCP) and restriction fragment length polymorphism (RFLP) capillary electrophoresis analysis and bacterial identification. The multiple fluorescence based SSCP method for the 16S rRNA gene and the RFLP method for the 16S-23S rRNA spacer region gene were developed and applied to the identification of pathogenic bacteria in clinical samples, in which home-made short-chained linear polyacrylamide (LPA) was used as a sieving matrix; a higher sieving capability and shorter analysis time were achieved than with a commercial sieving matrix because of the simplified template preparation procedure. A set of 270 pathogenic bacteria representing 34 species in 14 genera were analyzed, and a total of 34 unique SSCP patterns representing 34 different pathogenic bacterial species were determined. Based on the use of machine code to represent peak patterns developed in this paper, the identification of bacterial species becomes much easier.
Resumo:
A combined detection system of simultaneous contactless conductometric and fluorescent detection for capillary electrophoresis (CE) has been designed and evaluated. The two processes share a common detection cell. A blue light-emitting diode (LED) was used as the excitation source and an optical fiber was used to collect the emitting fluorescence for fluorescent detection (FD). Inorganic ions, fluorescein isothiocyanate (FITC)-labeled amino acids and small molecule peptides were separated and detected by the combined detector, and the detection limits (LODs) of sub-μ M level were achieved.
Resumo:
A capillary zone electrophoresis (CZE) method has been developed for investigating the physicochemical characteristics of five Strychnos alkaloids in Strychnos nux-vomica L. Firstly, the dissociation constants of the five Strychnos alkaloids were determined, based on the relation between the effective mobility of the solutes and the buffer pH. The mathematical relationship was strictly deduced from the fundamental electrophoretic theory and the dissociation equilibrium. Secondly, an equation describing the relation between the migration time of alkaloids of similar structure and their molecular weights was developed and used to predict the migration order and to calculate the electrosomotic velocity. The results predicted by the theory agreed with those from experiments.
Resumo:
One asymmetric transformation reaction Of L-proline (L-Pro) to D-proline was studied by a home-made capillary array electrophoresis (CAE) for the first time. The aldehyde catalysts and the organic acid solvents for the asymmetric transformation reaction were rapidly screened and the enantiomeric excess values of the asymmetric product Of L-Pro were directly obtained from the electrophoretogram of CAE.
Resumo:
A method has been developed for determining of heavy metal ions by field-amplified sample injection capillary electrophoresis with contactless conductivity detection. The effects of the 2-N-morpholinoethanesulfonic acid/histidine (MES/His) concentration in the sample matrix, the injection time and organic additives on the enrichment factor were studied. The results showed that MES/His with a low concentration in the sample matrix, an increase of the injection time and the addition of acetonitrile improved the enrichment factor. Four heavy metal ions (Zn2+, Co2+, Cu2+ and Ni2+) were dissolved in deionized water, separated in a 10 mM MES/His running buffer at pH 4.9 and detected by contactless conductivity detection. The detection sensitivity was enhanced by about three orders of magnitude with respect to the non-stacking injection mode. The limits of detection were in the range from 5 nM (Zn2+) to 30 nM (Cu2+). The method has been used to determine heavy metal ions in tap water.
Resumo:
An interface of chip-based capillary electrophoresis (CE)-inductively coupled plasma-atomic emission spectrometry (ICP-AES) that is based on cross-flow nebulization has been developed. A polydimethylsiloxane (PDMS) CE-chip with conventional cross channel layout was used. A stainless steel tube was placed orthogonal to the exit of the CE separation channel for cross flow nebulization. A supplementary flow of buffer solution at the channel exit was used to improve nebulization efficiency. Two capillaries were inserted into the CE chip near the inlet of the separation channel for sample and buffer solution injection. Syringe pumps were used to manipulate the flow rate and flow direction of the sample, buffer, and supplementary buffer solution. Peak broadening due to the shape (bulb and tube-shaped) and size of the spray chambers was studied. The smaller tube-shaped spray chamber was used because of smaller peak broadening effect due to aerosol transport. The nebulization and transport efficiency of the CE-ICP interface was approximately 10%. Ba2+ and Mg2+ ions were eluted from the CE-chip within 30 s. Resolution of the Ba2+ and Mg2+ peaks was 0.7 using the chip-based CE-ICP-AES system.