228 resultados para Linearly Lindelöf
Resumo:
Our goal was to determine the effect of diets with different crude protein (CP) contents and metabolizable energy (W) levels on daily live-weight gain, apparent digestibility, and economic benefit of feedlot yaks on the Tibetan plateau during winter. Yaks were either 2- or 3-years old and randomly selected from the same herd. The 3-year-olds were placed into one of two experimental groups (A and B) and a control (CK1), and the two-year-olds were placed into one of three experimental groups (C, D and E) and a control (CK2) (N per group = 5). Yak in the control groups were allow graze freely, while those in the experimental groups yaks were fed diets higher in contains crude protein and metabolizable energy through a winter period inside a warming shed. Results indicated that live-weight gain of treatment groups was higher than their respective controls during experiment, and that daily live-weight gain of every 10 days among different treatments was significant difference (P < 0.05). In addition, apparent digestibility of different diets was linearly and positively related to feedlotting time, and feed conversion efficiency for A, C, D and E groups was quadratically related to feedlotting time (P < 0.01), however, feed conversion efficiency for B group was linearly and positively related to feedlotting time (P < 0.05). The economic benefit was 1.15 for A, 1.89 for B, 1.16 for C, 1.54 for D, and 4,52 for E. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
A study was conducted on grass mixtures that included smooth bromegrass (SB) + drooping wild ryegrass (DW), smooth bromegrass + Siberian wild ryegrass (SW) + crested wheatgrass (CW) and smooth bromegrass + Siberian wild ryegrass + drooping wild ryegrass + crested wheatgrass in the alpine region of Qinghai-Tibetan Plateau. The study was conducted from 1998 to 2000 to investigate the effects of N application rates and growing year on herbage dry matter (DM) yield and nutritive values. Herbage DM production increased linearly with N application rates. The effect of N application on DM yields was greater (P < 0.05) in the 2nd and 3rd production years than in the establishment year. Dry matter yields of SB + SW + CW and SB + SW + DW + CW can reach as high as 15 000 kg ha(-1) at 345 kg ha(-1) N rate in the 3rd growing year. With increased N application rates, crude protein (CP) contents and 48 h in sacco DM degradability of grasses increased (P < 0.05). No effect (P > 0.05) of N application was detected on organic matter (OM) and acid detergent fibre (ADF) concentration. It can be concluded that for increased biomass production in the alpine region of the Qinghai-Tibetan Plateau, a minimum of 345 kg N ha(-1) should be applied to grass stands in three split application of 115 kg N ha(-1), in early June, early July and late July
Resumo:
The extremely high level of solar radiation on the Qinghai-Tibet Plateau may induce photoinhibition and thus limit leaf carbon gain. To assess the effect of high light, we examined gas exchange and chlorophyll fluorescence for two species differing in light interception: the prostrate Saussurea superba and the erect-leaved Gentiana straminea. In controlled conditions with favorable water and temperature, neither species showed apparent photoinhibition in gas exchange measurements. In natural environment, however, their photosynthetic rate decreased remarkably at high light. Photosynthesis depression was aggravated under high leaf temperature or soil water stress. Relative stomatal limitation was much higher in S. superba than in G. straminea and it remarkably increased in the later species at midday when soil was dry. F-v/F-m as an indicator for photoinhibition was generally higher in S. superba than in the other species. F-v/F-m decreased significantly under high light at midday in both species, even when soil moisture was high. F-0 linearly elevated with the increment of leaf temperature in G. straminea, but remained almost constant in S. superba. Electron transport rate (ETR) increased with photosynthetically active photon flux density (PPFD) in S. superba, but declined when PPFD was high than about 1000 mumol m(-2) s(-1) in G. straminea. Compared to favorable environment, the estimated daily leaf carbon gain at PPFD above 800 mumol m(-2) s(-1) was reduced by 32% in S. superba and by 17% in G. straminea when soil was moist, and by 43% and 53%, respectively, when soil was dry. Our results suggest that the high radiation induces photoinhibition and significantly limits photosynthetic carbon gain, and the limitation may further increase at higher temperature and in dry soil.
Resumo:
We used the eddy covariance method to measure the M exchange between the atmosphere and an alpine meadow ecosystem (37degrees29-45'N, 101degrees12-23'E, 3250m a.s.l.) on the Qinghai-Tibetan Plateau, China in the 2001 and 2002 growing seasons. The maximum rates Of CO2 uptake and release derived from the diurnal course Of CO2 flux (FCO2) were -10.8 and 4.4 mumol m(-2) s(-1), respectively, indicating a relatively high net carbon sequestration potential as compared to subalpine coniferous forest at similar elevation and latitude. The largest daily CO2 uptake was 3.9 g cm(-2) per day on 7 July 2002, which is less than half of those reported for lowland grassland and forest at similar latitudes. The daily CO2 uptake during the measurement period indicated that the alpine ecosystem might behave as a sink of atmospheric M during the growing season if the carbon lost due to grazing is not significant. The daytime CO2 uptake was linearly correlated with the daily photosynthetic photon flux density each month. The nighttime averaged F-CO2 showed a positive exponential correlation with the soil temperature, but apparently negative correlation with the soil water content. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Compared with the conventional P wave, multi-component seismic data can markedly provide more information, thus improve the quality of reservoir evaluation like formation evaluation etc. With PS wave, better imaging result can be obtained especially in areas involved with gas chimney and high velocity formation. However, the signal-to-noise of multi-component seismic data is normally lower than that of the conventional P wave seismic data, while the frequency range of converted wave is always close to that of the surface wave which adds to the difficulty of removing surface wave. To realize common reflection point data stacking from extracted common conversion point data is a hard nut to crack. The s wave static correction of common receiver point PS wave data is not easy neither. In a word, the processing of multi-component seismic data is more complicated than P wave data. This paper shows some work that has been done, addressing those problems mentioned above. (1) Based on the AVO feature of converted wave, this paper has realized the velocity spectrum of converted waves by using Sarkar’s generalized semblance method taking into account of AVO factor in velocity analysis. (2)We achieve a method of smoothly offset division normal method.Firstly we scan the stacking velocities in different offset divisions for a t0, secondly obtain some hyperbolas using these stacking velocities, then get the travel time for every trace using these hyperbolas; in the end we interpolate the normal move out between two t0 for every trace. (3) Here realize a method of stepwise offset division normal moveout.It is similar to the method of smoothly offset division normal moveout.The main difference is using quadratic curve, sixth order curve or fraction curve to fit these hyperbolas. (4)In this paper, 4 types of travel time versus distance functions in inhomogeneous media whose velocity or slowness varies with depth and vertical travel time have been discussed and used to approximate reflection travel time. The errors of ray path and travel time based on those functions in four layered models were analyzed, and it has shown that effective results of NMO in synthetic or real data can be obtained. (5) The velocity model of converted PS-wave can be considered as that of P -wave based on the ghost source theory, thus the converted wave travel time can be approximated by calculation from 4 equivalent velocity functions: velocity or slowness vary linearly with depth or vertical travel time. Then combining with P wave velocity analysis, the converted wave data can be corrected directly to the P-wave vertical travel time. The improvements were shown in Normal Move out of converted waves with numerical examples and real data. (6) This paper introduces the methods to compute conversion point location in vertical inhomogeneous media based on linear functions of velocity or slowness versus depth or vertical travel time, and introduce three ways to choose appropriate equivalent velocity methods, which are velocity fitting, travel time approximation and semblance coefficient methods.
Resumo:
With the variations of solar activity, solar EUV and X-ray radiations change over different timescales (e.g., from solar cycle variation to solar flare burst). Since solar EUV and X-ray radiations are the primary energy sources for the ionosphere, theirs variations undoubtedly produce significant and complicated effects on the ionosphere. So the variations of solar activity significantly affect the ionosphere. It is essential for both ionospheric theory and applications to study solar activity effects on the ionosphere. The study about solar activity variations of the ionosphere is an important part of the ionospheric climatology. It can enhance the understanding for the basic processes in the ionosphere, ionospheric structure and its change, ionosphere/thermosphere coupling, and so on. As for applications, people need sufficient knowledges about solar activity variations of the ionosphere in order to improve ionospheric models so that more accurate forecast for the ionospheric environments can be made. Presently, the whole image about the modalities of ionospheric solar activity variations is still unknown, and related mechanisms still cannot be well understood. This paper is about the effects of the 11-year change in solar activity to the low- and mid-latitude ionosphere. We use multi-type ionospheric observations and model to investigate solar activity effects on the electron density and ionospheric spatial structure, and we focus on discussing some related mechanisms. The main works are as follows: Firstly, solar activity variations of ionospheric peak electron density (NmF2) around 1400 LT were investigated using ionosonde observations in the 120°E sector. The result shows that the variation trend of NmF2 with F107 depends on latitudes and seasons. There is obvious saturation trend in low latitudes in all seasons; while in middle latitudes, NmF2 increases linearly with F107 in winter but saturates with F107 at higher solar activity levels in the other seasons. We calculated the photochemical equilibrium electron density to discuss the effects induced by the changes of neutral atmosphere and dynamics processes on the solar activity variations of NmF2. We found that: (1) Seasonal variation of neutral atmosphere plays an important role in the seasonal difference of the solar activity variations of NmF2 in middle latitudes. (2) Less [O]/[N2] and higher neutral temperature are important for the saturation effect in summer, and the increase of vibrational excited N2 is also important for the saturation effect. (3) Dynamics processes can significantly weaken the increase of NmF2 when solar activity enhances, which is also a necessary factor for the saturation effect. Secondly, solar activity variations of nighttime NmF2 were investigated using ionosonde observations in the 120°E sector. The result shows that the variation trends of NmF2 with F107 in nighttime are different from that in daytime in some cases, and the nighttime variation trends depend on seasons. There is linear increase trend in equinox nighttime, and saturation trend in summer nighttime, while the increase rate of NmF2 with F107 increases when solar activity enhances in winter nighttime (we term it with “amplification trend”). We discussed the possible mechanisms which affect the solar activity variations of nighttime NmF2. The primary conclusions are as follows: (1) In the equatorial ionization anomaly (EIA) crest region, the plasma influx induced by the pre-reversal enhancement (PRE) results in the change of the variation trend between NmF2 and F107 from “saturation” to “linear” after sunset in equinoxes and winter; while the recombination process at the F2-peak is the primary factor that affects the variation trend of NmF2 with F107 in middle latitudes. (2) The recombination coefficient at the F2-peak height reaches its maximum at moderate solar activity level in winter nighttime, which induces NmF2 attenuates more quickly at moderate solar activity level. This is the main reason for the amplification trend. (3) The change of the recombination process at the F2-peak with solar activity depends on the increases of neutral parameters (temperature, density et al.) and the F2-peak height (hmF2). The seasonal differences in the changes of neutral atmosphere and hmF2 with solar activity are the primary reasons for the seasonal difference in the variation trend of nighttime NmF2 with F107. Finally, we investigated the solar activity dependence of the topside ionosphere in low latitudes using ROCSAT-1 satellite (at 600 km altitude) observations. The primary results and conclusions are as follows: (1) Latitudinal distribution of the plasma density is local time, seasonal, and solar activity dependent. In daytime, there is a plasma density peak at the dip equator. The peak is obviously enhanced at high solar activity level, and the strength of the peak strongly depends on seasons. While at sunset, two profound plasma density peaks (double-peak structure) are found in solar maximum equinox months. (2) Local time dependence of the latitudinal distribution is due to the local time variation of the equatorial dynamics processes. Double-peak structure is attributed to the fountain effect induced by strong PRE. Daytime peak enhances with solar activity since the plasma density increases with solar activity more strongly at the dip equator due to the equatorial vertical drift, and its seasonal dependence is mainly due to the seasonal variations of neutral density and the equatorial vertical drift. In the sunset sector, seasonal and solar activity dependences of the latitudinal distribution are related to the seasonal and solar activity variations of PRE. (3) The variation trend of the plasma density with solar activity shows local time, seasonal, and latitudinal differences. That is different from the changeless amplification trend at the DMSP altitude (840 km). Profound saturation effect is found in the dip equator region at equinox sunset. This saturation effect in the topside ionosphere is realated to the increase of PRE with solar activity. Solar activity variation trend of the topside plasma density was discussed quantitatively by Chapman-α function. The result shows that the effect induced by the change of the scale height is dominant at high altitudes; while the variation trend of ROCSAT-1 plasma density with solar activity is suggested to be related to the changes of the peak height, the scale height, and the peak electron density with solar activity.
Resumo:
The dissertation addressed the problems of signals reconstruction and data restoration in seismic data processing, which takes the representation methods of signal as the main clue, and take the seismic information reconstruction (signals separation and trace interpolation) as the core. On the natural bases signal representation, I present the ICA fundamentals, algorithms and its original applications to nature earth quake signals separation and survey seismic signals separation. On determinative bases signal representation, the paper proposed seismic dada reconstruction least square inversion regularization methods, sparseness constraints, pre-conditioned conjugate gradient methods, and their applications to seismic de-convolution, Radon transformation, et. al. The core contents are about de-alias uneven seismic data reconstruction algorithm and its application to seismic interpolation. Although the dissertation discussed two cases of signal representation, they can be integrated into one frame, because they both deal with the signals or information restoration, the former reconstructing original signals from mixed signals, the later reconstructing whole data from sparse or irregular data. The goal of them is same to provide pre-processing methods and post-processing method for seismic pre-stack depth migration. ICA can separate the original signals from mixed signals by them, or abstract the basic structure from analyzed data. I surveyed the fundamental, algorithms and applications of ICA. Compared with KL transformation, I proposed the independent components transformation concept (ICT). On basis of the ne-entropy measurement of independence, I implemented the FastICA and improved it by covariance matrix. By analyzing the characteristics of the seismic signals, I introduced ICA into seismic signal processing firstly in Geophysical community, and implemented the noise separation from seismic signal. Synthetic and real data examples show the usability of ICA to seismic signal processing and initial effects are achieved. The application of ICA to separation quake conversion wave from multiple in sedimentary area is made, which demonstrates good effects, so more reasonable interpretation of underground un-continuity is got. The results show the perspective of application of ICA to Geophysical signal processing. By virtue of the relationship between ICA and Blind Deconvolution , I surveyed the seismic blind deconvolution, and discussed the perspective of applying ICA to seismic blind deconvolution with two possible solutions. The relationship of PC A, ICA and wavelet transform is claimed. It is proved that reconstruction of wavelet prototype functions is Lie group representation. By the way, over-sampled wavelet transform is proposed to enhance the seismic data resolution, which is validated by numerical examples. The key of pre-stack depth migration is the regularization of pre-stack seismic data. As a main procedure, seismic interpolation and missing data reconstruction are necessary. Firstly, I review the seismic imaging methods in order to argue the critical effect of regularization. By review of the seismic interpolation algorithms, I acclaim that de-alias uneven data reconstruction is still a challenge. The fundamental of seismic reconstruction is discussed firstly. Then sparseness constraint on least square inversion and preconditioned conjugate gradient solver are studied and implemented. Choosing constraint item with Cauchy distribution, I programmed PCG algorithm and implement sparse seismic deconvolution, high resolution Radon Transformation by PCG, which is prepared for seismic data reconstruction. About seismic interpolation, dealias even data interpolation and uneven data reconstruction are very good respectively, however they can not be combined each other. In this paper, a novel Fourier transform based method and a algorithm have been proposed, which could reconstruct both uneven and alias seismic data. I formulated band-limited data reconstruction as minimum norm least squares inversion problem where an adaptive DFT-weighted norm regularization term is used. The inverse problem is solved by pre-conditional conjugate gradient method, which makes the solutions stable and convergent quickly. Based on the assumption that seismic data are consisted of finite linear events, from sampling theorem, alias events can be attenuated via LS weight predicted linearly from low frequency. Three application issues are discussed on even gap trace interpolation, uneven gap filling, high frequency trace reconstruction from low frequency data trace constrained by few high frequency traces. Both synthetic and real data numerical examples show the proposed method is valid, efficient and applicable. The research is valuable to seismic data regularization and cross well seismic. To meet 3D shot profile depth migration request for data, schemes must be taken to make the data even and fitting the velocity dataset. The methods of this paper are used to interpolate and extrapolate the shot gathers instead of simply embedding zero traces. So, the aperture of migration is enlarged and the migration effect is improved. The results show the effectiveness and the practicability.
Resumo:
Intense tectonic renovation has occurred in the eastern continent of china since Mesozoic, as evidenced by the high heat flow, widespread magma extrusion and volcanic activities, and development of large sedimentary basins. To explain the cause and mechanism for the tectonic process in this period, some researchers have put forward various models, such as mantle plume, subduction of the Pacific slab, Yangtze Block-North China Block collision, etc. Their seismological evidence, however, is still scarce..During the period from 2000 to 2003, large temporary seismic arrays were established in North China by the Institute of the Geology and Geophysics, Chinese Academy of Sciences. Total 129 portable seismic stations were linearly emplaced across the western and eastern boundaries of the Bohai Bay Basin, and accumulated a large amount of high-quality data. Moreover, abundant data were also collected at the capital digital seismic network established in the ninth five-year period of national economic and social development. These provide an unprecedented opportunity for us to study the deep structure and associated geodynamic mechanism of lithospheric processes in North China using seismological techniques.Seismology is a kind of observation-based science. The development of seismic observations greatly promotes the improvement of seismologic theory and methodology. At the beginning of this thesis, I review the history of seismic observation progress, and present some routine processing techniques used in the array seismology. I also introduce two popular seismic imaging methods (receiver function method and seismic tomography).Receiver function method has been widely used to study the crustal and upper mantle structures, and many relevant research results have been published. In this thesis I elaborate the theory of this method, including the basic concept of receiver functions and the methodology for data pre-processing, stacking and migration. I also address some problems often encountered in practical applications of receiver function imaging.By using the teleseismic data collected at the temporary seismic arrays in North China, in particular, the traveltime information of P-to-S conversion and multiple reverberations of the Moho discontinuity, I obtain the distributions of the crustal thickness and the poisson ratio at the northwest boundary area of the Bohai Bay Basin and discuss the geological implications of the results.Through detailed intestigations on the crustal structural feature around the middle part of the Tanlu fault, considerable disparity in poisson ratios is found in the western and eastern sides of the Tanlu fault. Moreover, an obvious Moho offset is coincidently observed at the same surface location. A reasonable density model for the Tanlu fault area is also derived by simulating the observed gravity variations. Both receiver function study and gravity anomaly modeling suggest that the crustal difference between the western and eastern sides of the Tanlu fault is mainly resulted from their different compositions.With common conversion point imaging of receiver functions, I estimate the depths of the upper and lower boundaries of the mantle transition zone, i.e., the 410 and 660 km discontinuities, beneath most part of the North China continent The thickness of the transition zone (TTZ) in the study area is calculated by subtracting the depth of .410 km discontinuity from that of the 660km discontinuity. The resultant TTZ is 10-15 km larger in the east than in the west of the study area. Phase transitions at the 410 km and the 660 km discontinuities are known to have different Clapeyron slopes. Therefore, the TTZ is sensitive to the temperature changes in the transition zone. Previous studies have shown that the TTZ would be smaller in the mantle plume areas and become larger when the remnants of subducted slabs are present The hypothesis of mantle plume cannot give a reasonable interpretation to the observed TTZ beneath North China, Instead, the receiver function imaging results favor a dynamic model that correlates the thermal structure of the mantle transition zone and associated upper mantle dynamics of North China to the Pacific plate subduction process.
Resumo:
Kela-2 gas field in Tarim Basin is the main supply source for West-to-East Pipeline project, also the largest abnormally-pressured gas field discovered in China currently. The geological characterization, fine geological modeling and field development plan are all the world-class difficult problems. This work includes an integrated geological and gas reservoir engineering study using advanced technology and approaches, the scientific development plan of Kela-2 gas field as well as the optimizations of the drilling, production and surface schemes. Then, it's expected that the Kela-2 gas field can be developed high-efficiently.Kuche depression is one part of the thrust belt of the South Tianshan Mountains, Kela-2 field is located at the Kelasu structural zone in the north of Kuche depression. The field territory is heavily rugged with deeply cut gullies, complex geological underground structure, variable rock types, thrust structure development. Therefore, considerable efforts have been made to develop an integrated technique to acquire, process and interpret the seismic data in complicated mountain region. Consequently a set of seismic-related techniques in the complicated mountain region has been developed and successfully utilized to interpret the structure of Kela-2 gas field.The main reservoir depositional system of Kela 2 gas field is a platform - fan delta - braided river system. The reservoir rocks are medium-fine and extremely fine grained sandstones with high structure maturity and low composition maturity. The pore system structure is featured by medium-small pore, medium-fine throat and medium-low assortment. The reservoir of Kela-2 gas field is characteristic of medium porosity and medium permeability. The pay zone is very thick and its lateral distribution is stable with a good connection of sand body. The overpressure is caused mainly by the strongly tectonic squash activities, and other factors including the later rapid raise and compartment of the high-pressure fluid, the injection of high-pressure fluid into the reservoir.Based on the deliverability tests available, the average binomial deliverability equation is provided applicable for the overall field. The experimental results of rock stress-sensitive tests are employed to analyze the change trend of petrophysical properties against net confining stress, and establish the stress-based average deliverability equation. The results demonstrate the effect of rock deformation on the deliverability is limited to less than 5% in the early period of Kela-2 gas field, indicating the insignificant effect on deliverability of rock deformation.In terms of the well pattern comparisons and development planning optimizations, it is recommended that the producers should be located almost linearly along the structural axis. A total of 9 producers have a stable gas supply volume of 10.76 BCMPY for 17 years. For Kela-2 gas field the total construction investment is estimated at ¥7,697,690,000 RMB with the internal earning rate of 25.02% after taxation, the net present value of ¥7,420,160,000 RMB and the payback period of 5.66 years. The high profits of this field development project are much satisfactory.
Resumo:
General expressions used for extracting the orientation and alignment parameters of a symmetric top molecule from laser-induced fluorescence (LIF) intensity are derived by employing the density matrix approach. The molecular orientation and alignment are described by molecular state multipoles. Excitation and detection are circularly and linearly polarized lights, respectively. In general cases, the LIF intensity is a complex function of the initial molecular state multipoles, the dynamic factors and the excitation-detection geometrical factors. It contains a population, ten orientation and fourteen alignment multipoles. The problem of how to extract the initial molecular state multipoles from the resolved LIF intensity is discussed.
Resumo:
Influences of seven organic modifiers, including urea, methanol (MeOH), dioxane (DIO), tetrahydrofuran (THF), acetonitrile (ACN), 1-propanol (1-PrOH) and 2-propanol (2-PrOH), on the solute retention and the electrokinetic migrations in micellar electrokinetic capillary chromatography (MEKC) are investigated with sodium dodecyl sulfate (SDS) micelle as pseudostationary phase. It is observed that in the limited concentration ranges used in the MEKC systems the effect of organic modifier concentration on the retention can be described by the equation logk'=logk'(w)-SC for most binary aqueous-organic buffer, but deviations from this retention equation are observed at ACN and particularly THF as organic modifiers. With parameter S as a measure of the elutropic strength, the elutropic strength of the organic modifiers is found to follow a general order urea
Resumo:
With using short capillary column packed with porous and non-porous ODS stationary phases, high speed separation of 6 neutral aromatic compounds within 36 s by capillary electrochromatography (CEC) has been performed. Good reproducibility of the migration times for those solutes in high speed CEC was observed with RSD less than 1%. Both the linear velocity of EOF and the current linearly increases with the applied voltage, which means that the thermal effect by Joule heating was small. However, the capacity factor of solutes was found to decrease with the increase of the applied voltage, which was caused by the fact that about several seconds needed for the increase of voltage from 0 to applied value on a commercial CE instrument made larger contributions to the migration times of the early eluted compounds than those of lately eluted ones during high speed CEC, and voltage effect would increase with the higher applied voltage used. The linear relationship between the logarithm of capacity factor and the number of carbon for homologous compounds was observed, and positive value of slope means that the hydrophobicity of solutes is one of the main contribution factors to retention in high speed CEC packed with ODS stationary phases.
Resumo:
The states of surface Co and Mo sites on nitrided CoMo supported on Al2O3 were studied by adsorption of CO and NO as IR probe molecules. Three IR bands at 2200, 2060 and 2025 cm(-1) were detected for adsorbed CO. These bands can be respectively attributed to the surface NCO species as a result of CO adsorbed on surface N sites, and linearly adsorbed CO on surface Co and Mo sites in low valence states. The addition of cobalt to the Mo nitride diminishes the band at 2200 cm(-1). This may be due to either the change of the surface structure of the supported nitride, or the formation of a new phase, CoxMoyNz, as suggested in the literature Kim et al., Catal. Lett., 1997, 43, 91 and Logan et al., Catal. Lett., 1998, 56, 165. Comparison of CO and NO adsorption on Mo2N/Al2O3 and CoMoNx/Al2O3 indicates that the presence of cobalt can promote the reduction and nitridation of Mo.
Resumo:
Firstly, prosodic boundaries of 1991 common sentences were labeled based on speech perception experiment, relation between prosodic structure and syntactic structure was examined after immediate constituent analysis, an example of prosodic phrasing from text sentences was provided using CART. Then, using designed sentences, phenomena of downstep and declination in pitch downtrend of Chinese declarative sentences were examined, commonness and speciality of Chinese intonation were discussed. The main results of the study are: 1 The distribution patterns of prosodic phrase boundaries for different syntactic structures are different, and there is great freedom in prosodic chunking. The relation between syntactic structure and prosodic structure can only be discussed in statistical sense. 2 Besides of syntactic relation, the second most important factor which influences prosodic phrase boundaries is length. The distances to the front boundary and the back boundary are more important than the lengths of the left syntactic contituent and the right one. In our corpus, the length distributions of prosodic phrases are 5±3 syllables. 3 Automatic downstep can lower intonation linearly, but is affected by stress easily. Non-automatic downstep lowers the higher part of pitch contours and has no effect on the lower one of the intonation. 4 The downtrend reason of low point is declination. The extent of declination relates to not only tones of low points, but also their positions in prosodic words, the baselines decline much faster when low point are in the initial position of a prosodic word. In long sentences, the baselines of prosodic phrases are the basic declination units, and the whole declination pattern of a sentence is related to syntactic relations between two neighboring prosodic phrases.
Resumo:
A novel norvancomycin-bonded chiral stationary phase (NVC-CSP) was synthesized by using the chiral selector of norvancomycin. The chiral separation of enantiomers of several dansyl-amino acids by high-performance liquid chromatography (HPLC) in the reversed-phase mode is described. The effects of some parameters, such as organic modifier concentration, column temperature, pH and flow rate of the mobile phase, on the retention and enantioselectivity were investigated. The study showed that ionic, as well as hydrophobic interactions were engaged between the analyte and macrocycle in this chromatographic system. Increasing pH of buffers usually improved the chiral resolution for dansyl-alpha-amino-n-butyric acid (Dns-But), dansyl-methionine (Dns-Met) and dansyl-threonine (Dns-Thr), but not for dansyl-glutamic acid (Dns-Glu) which contains two carboxylic groups in its molecular structure. The natural logarithms of selectivity factors (In alpha) of all the investigated compounds depended linearly on the reciprocal of temperature (1/T), most processes of enantioseparation were controlled enthalpically. Interestingly, the process of enantioseparation for dansyl-threonine was enthalpy-controlled at pH of 3.5, while at pH of 7.0, it was entropy-controlled according to thermodynamic parameters Delta(R,S)DeltaHdegrees and Delta(R,S)DeltaSdegrees afforded by Van't Hoff plots. In order to get baseline separation for all the solutes researched, norvancomycin was also used as a chiral mobile phase additive. In combination with the NVC-CSP remarkable increases in enanselectivity were observed for all the compounds, as the result of a "synergistic" effect. (C) 2003 Elsevier B.V. All rights reserved.