577 resultados para CdTe quantum dots
Resumo:
We have studied the effects of postgrowth rapid thermal annealing on the optical properties of 3-nm-height InAs/GaAs quantum dots covered by 3-nm-thick InxGa1-xAs (x = 0, 0.1, and 0.2) overgrowth layer. At higher annealing temperature (T greater than or equal to 750 degreesC), the photoluminescence peak of InGaAs layer has been observed at lower-energy side of the InAs quantum-dot peak. In addition, the blueshift in photoluminescence (PL) emission energy is found to he similar for all samples with increasing the annealing temperature from 650 to 850 degreesC. However, the trend of narrowing of photoluminescence linewidth is significantly different for InAs quantum dots with different In mole fractions in InGaAs overgrowth layer. These results suggest that the intermixing in the lateral direction plays an important role in helping to understand the modification of optical properties induced by rapid thermal annealing. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
Strong temperature dependence of optical properties has been studied in visible InAlAs/AlGaAs quantum dots, by employing photoluminescence (PL) and time-resolved photoluminescence (TRPL) measurements. The fast redshift of the exciton emission peak was observed at much lower temperature range compared to that observed in the InAs/GaAs QDs. In TRPL we did not observe the constant decay time even at low temperature. Instead, the observed decay time increases quickly with increasing temperature, showing 2D properties in the transient dynamic process. We attributed our results to the strong lateral coupling effect, which results in the formation of the local minibands or extended states from the discrete energy levels. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
InAs quantum dots (QDs) grown on GaAs surface are investigated. The observed abnormal photoluminescence (PL) properties, including extremely sharp high-energy peaks, almost temperature-independent linewidth, and fast thermal quenching, are discussed in terms of the strong quantum confinement effects due to the absence of a cap layer and the lack of carrier redistribution channel caused by the small number of QDs capable of contributing to PL and the high-density surface defects. (C) 2000 American Institute of Physics. [S0003-6951(00)01244-4].
Resumo:
In this work we report the photoluminescence (PL) and interband absorption study of Si-modulation-doped multilayer InAs/GaAs quantum dots grown by molecular beam epitaxy (MBE) on (100) oriented GaAs substrates. Low-temperature PL shows a distinctive double-peak feature. Power-dependent PL and transmission electron microscopy (TEM) confirm that they stem from the ground states emission of islands of bimodal size distribution. Temperature-dependent PL study indicates that the family of small dots is ensemble effect dominated while the family of large dots is likely to be dominated by the intrinsic property of single quantum dots (QDs). The temperature-dependent PL and interband absorption measurements are discussed in terms of thermalized redistribution of the carriers among groups of QDs of different sizes in the ensemble. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
The size and shape evolution of self-assembled InAs quantum dots (QDs) influenced by 2.0 ML InAs seed layer has been systematically investigated for 2.0, 2.5, and 2.9 ML deposition on GaAs(100) substrate. Based on comparisons with the formation of large incoherent InAs islands on single-layer samples at late growth stage, the larger coherent InAs quantum dots at 2.9 ML deposition has been observed on the second InAs layer. A simple model analysis accounting for the surface strain distribution influenced by buried islands gives a stronger increment of critical QD diameter for dislocation nucleation on the second layer in comparison with the single-layer samples. Additionally, the inhibition of dislocation nucleation in InGaAs/GaAs large islands can also be explained by our theoretical results. (C) 2000 American Institute of Physics. [S0021-8979(00)08922-2].
Resumo:
InAs self-organized quantum dots (QDs) grown on annealed low-temperature GaAs (LT-GaAs) epi-layers and on normal temperature GaAs buffer layers have been compared by transmission electron microscopy (TEM) and photoluminescence (PL) measurements. TEM evidences that self-organized QDs were formed with a smaller size and larger density than that on normal GaAs buffer layers. It is discussed that local tensile surface strain regions that are preferred sites for InAs islands nucleation are increased in the case of the LT-GaAs buffer layers due to exhibiting As precipitates. The PL spectra show a blue-shifted peak energy with narrower linewidth revealing the improvement of optical properties of the QDs grown on LT-GaAs epi-layers. It suggests us a new way to improve the uniformity and change the energy band structure of the InAs self-organized QDs by carefully controlling the surface stress states of the LT-GaAs buffers on which the QDs are formed. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
Self-assembled InAs nanostructures on (0 0 1)InP substrate have been grown by molecular beam epitaxy (MBE) and evaluated by transmission electron microscopy (TEM) and photoluminescence (PL). It is found that the morphologies of InAs nanostructures depend strongly on the underlying alloy. Through introducing a lattice-matched underlying InAlGaAs layer on InAlAs buffer layer, the InAs quantum dots (QDs) can be much more uniform in size and great improvement in PL properties can be attained at the same time. In particular, 1.55 mu m luminescence at room temperature (RT) can be realized in InAs QDs deposited on (0 0 1)InP substrate with underlying InAlGaAs layer. (C) 2000 Published by Elsevier Science B.V. All rights reserved.
Resumo:
Self-assembled InAs quantum dots (QDs) in InAlAs grown on (001) and (311)B InP substrates by molecular beam epitaxy (MBE) have been comparatively investigated. A correlated study of atomic force microscopy (AFM) and photoluminescence (PL) disclosed that InAs QDs grown on high-index InP substrates can lead to high density and uniformity. By introducing a lattice-matched InAlGaAs overlayer on InAlAs buffer, still more dense and uniform InAs QDs were obtained in comparison with InAs QDs formed with only InAlAs matrix. Moreover, two-dimensional well-ordered InAs dots with regular shape grown on (311)B InP substrates are reported for the first time. We explained this exceptional phenomenon from strain energy combined with kinetics point of view. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
Optical and structural properties of self-organized InAs/GaAs quantum dots (QDs) with InxGa1-xAs or GaAs cover layers grown by molecular beam epitaxy (MBE) have been characterized by transmission electron microscopy (TEM), atomic force microscopy (AFM) and photoluminescence (PL) measurements. The TEM and AFM images show that the surface stress of the InAs QDs was suppressed by overgrowth of a InxGa1-xAs covering layer on the top of the QDs and the uniformity of the QDs preserved. PL measurements reveal that red shifts of the PL emission due to the reduction of the surface strain of the InAs islands was observed and the temperature sensitivity of the PL emission energy was suppressed by overgrowth of InxGa1-xAs layers compared to that by overgrowth of GaAs layers.
Resumo:
Systematic study of molecular beam epitaxy-grown self-assembled In(Ga)As/GaAs, In-AlAs/AlGaAs/GaAs, and InAs/InAlAs/InP quantum dots (QDs) is demonstrated. By adjusting growth conditions, surprising alignment, preferential elongation, and pronounced sequential coalescence of dots under the specific condition are realized. Room-temperature (RT) continuous-wave (CW) lasing at the wavelength of 960 nm with output power of 1 W is achieved from vertical coupled InAs/GaAs QDs ensemble. The RT threshold current density is 218 A/cm(2). An RT CW output power of 0.53 W ensures at least 3 000 h lasing (only drops 0.83 db). This is one of the best results ever reported.
Resumo:
Optical and structural investigations of InAs quantum dots (QDs) covered by InxGa1-xAs (0 less than or equal to x less than or equal to 0.3) overgrowth layer have been systematically reported. The decrease of strain in the growth direction of InAs quantum dots covered by InGaAs layer instead of GaAs is demonstrated by transmission electron microscopy experiments. In addition, the atomic force microscopy measurement shows that the surface of InAs islands with 3-nm-thick In0.2Ga0.8As becomes flatter. However, the InGaAs islands nucleate on the top of quantum dots during the process of InAs islands covered with In0.3Ga0.7As. The significant redshift of the photoluminescence peak energy and reduction of photoluminescence linewidth of InAs quantum dots covered by InGaAs are observed. The energy gap change of InAs QDs covered by InGaAs could be explained in terms of reducing strain, suppressing compositional mixing, and increasing island height. (C) 2000 American Institute of Physics. [S0021-8979(00)04018-4].
Resumo:
The excitation transfer processes in vertically self organized pairs of unequal-sized quantum dots (QD's), which are created in InAs/GaAs bilayers with different InAs deposition amounts in the first and second layers, have been investigated experimentally by photoluminescence technique. The distance between the two dot layers is varied from 3 to 12 nm. The optical properties of the formed pairs of unequal-sized QD's with clearly discernible ground-state transition energy depend on the spacer thickness. When the spacer layer of GaAs is thin enough, only one photoluminescence peak related to the large QD ensemble has been observed as a result of strong electronic coupling in the InAs QD pairs. The results provide evidence for nonresonant energy transfer from the smaller QDs in the second layer to the larger QD's in the first layer in such an asymmetric QD pair.
Resumo:
Self-assembled InAs quantum dots are fabricated on a GaAs substrate by molecular beam epitaxy. The dots are covered by several monolayers of In0.2Ga0.8As before a GaAs cap layer and an in situ postgrowth annealing is performed to tune the emission to higher energy. The temperature dependence of photoluminescence from this structure demonstrates a slower redshift rate of the peak position, a gradual broadening of the linewidth and an abnormal enhancement of integrated intensity as the temperature is increased from 15 to 300 K. These phenomena are closely related to the introduction of an InGaAs layer and to the intermixing of In and Ga atoms during annealing. We propose a model to explain the unusual increase in PL intensity, which fits the experimental data well. (C) 2000 American Institute of Physics. [S0021-8979(00)04618-1].
Influence of substrate orientation on In0.5Ga0.5As/GaAs quantum dots grown by molecular beam epitaxy
Resumo:
In this paper, In0.5Ga0.5As quantum dots are fabricated on GaAs (100) and (n11)A/B (n = 3, 5) substrates by molecular beam epitaxy. Atomic force microscopy shows that the quantum dots on each oriented substrate are different in size, shape and distribution. In addition, photoluminescence spectra from these quantum dots are different in emission peak position, line width and integrated intensity. Auger electron spectra demonstrate that In concentration is larger near the surface than inside quantum dots, suggesting the occurrence of surface segregation effect during the growth of InGaAs dots. The surface segregation effect is found to be related to substrate orientation. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
In this paper, we investigated the self-assembled quantum dots formed on (100) and (N11)B (N = 2, 3, 4, 5) InP substrates by molecular beam epitaxy (MBE). Two kinds of ternary QDs (In0.9Ga0.1As and In0.9Al0.1As QDs) are grown on the above substrates; Transmission electron microscopy (TEM) and photoluminescence (PL) results confirm QDs formation for all samples. The PL spectra reveal obvious differences in integral luminescence, peak position, full-width at half-maximum and peak shape between different oriented surfaces. Highest PL integral intensity is observed from QDs on (411)B surfaces, which shows a potential for improving the optical properties of QDs by using high-index surface. (C) 2000 Elsevier Science B.V. All rights reserved.