267 resultados para CONDUCTING POLYMER-FILMS
Resumo:
Polymer concentration and shear and stretch field effects on the surface morphology evolution of three different kinds of polymers (polystyrene (PS), polybutadiene (PB) and polystyrene-b-polybutadiene-b-polystyrene (SBS)) during the spin-coating were investigated by means of atomic force microscopy (AFM). For PS and SBS, continuous film, net-like structure and particle structure were observed at different concentrations. For PB, net-like structures were not observed and continuous films and radial array of droplets emerged. Moreover, we compared surface morphology transitions on different substrate locations from the center to the edge. For PS, net-like structure, broken net-like structure and irregular array of particles were observed. For SBS, net-like structure, periodically orientated string-like structure and broken-line structure appeared. But for PB, flower-like holes in the continuous film, distorted stream-like structure and irregular distributions of droplets emerged. These different transitions of surface morphologies were discussed in terms of individual material property.
Resumo:
A series of novel ternary polyimide/SiO2/polydiphenylsiloxane (PI/SiO2/PDPhS) composite films were prepared through co-hydrolysis and condensation between tetramethoxysilane, diphenyldimethoxysilane (DDS) and aminopropyltriethoxysilane-terminated polyamic acid, using an in situ sol-gel method. The composite films exhibited good optical transparency up to 30 wt% of total content of DDS and SiO2. SEM analysis showed that the PDPhS and SiO2 were well dispersed in the PI matrix without macroscopic separation of the composite films. TGA analysis indicated that the introduction of SiO2 could improve the thermal stability of the composite films. Dynamic mechanical thermal analysis showed that the composite films with low DDS content (5 wt%) had a higher glass transition temperature (T-g) than pure PI matrix. When the content of DDS was above 10 wt%, the T-g of the composite decreased slightly due to the plasticizing effect of flexible PDPhS linkages on the rigid PI chains. The composite films with high SiO2 content exhibited higher values of storage modulus. Tensile measurements also showed that the modulus and tensile strength of the composite films increased with increasing SiO2 content, and the composite films still retained a high elongation at break due the introduction of DDS.
Resumo:
A series of novel polyimide/polydiphenylsiloxane) (PI/PDDS) composite films with different contents of DDS were prepared using sol-gel method. The noncrosslinked PI-DDS and crosslinked PIS-DDS were synthesized through cohydrolysis and condensation between DDS and polyamic acid (PAA) or aminopropyltriethoxysilane(APTES)-terminated polyamic acid (PAAS). All the composite films have high thermal stability near pure PI. Field emission scanning electron microscopy (FE-SEM) study shows that the polysiloxane from hydrolyzed DDS well dispersed in polyimide matrix, without macroscopic separation for the composite films with low content of DDS, while large domain of polysiloxane was formed in films with high DDS content. The microstructure of composite films is in accordance with the transparency of corresponding films. X-ray study shows the PDDS is amorphous in PI matrix. The introduction of DDS into PI can improve the elongation at break and at the same time, the composite films still remained with higher modulus and tensile strength. The density and water absorption of the composite films decreased with the increasing DDS content. The composite films with DDS content below 10 wt % exhibit good solvent resistance.
Resumo:
In this Letter, crystal growth of a symmetric crystalline-amorphous diblock copolymer, poly(styrene-b-epsilon-caprolactone) (PS-b-PCL), in thin films was investigated by atomic force microscopy (AFM), Relief structures of holes and islands were formed during annealing the film at the molten state, and the in situ observation of subsequent crystal growth at room temperature indicated that the crystals were preferred to occur at the edge of holes or islands and grew into the interior area. It was concluded that the stretched PCL blocks at the edge of relief structures, caused by material transportation or deformation of the interface, could act as nucleation agents during polymer crystallization. The crystal growth rate of individual lamellae varied both from lamellae to lamellae and in time, but the area occupied by crystals increased constantly with time. At 22 degreesC, the growth rate was 1.2 x 10(-2) mum(2)/min with the scan size 2 x 2 mum(2).
Resumo:
The surface morphology and crystallization behavior of a weakly segregated symmetric diblock copolymer, poly(styrene-b-6-caprolactone) (PS-b-PCL), in thin films were investigated by optical microscopy, X-ray photoelectron spectroscopy, and atomic force microscopy (AFM). When the samples were annealed in the molten state, surface-induced ordering, that is, relief structures with uniform thickness or droplets in the adsorbed monolayer, were observed depending on the annealing temperature. The polar PCL block preferred to wet the surface of a silicon wafer, while the PS block wet the air interface. This asymmetric wetting behavior led to the adsorbed monolayer with a PCL block layer having a thickness of around 4.0 nm. The crystallization of PCL blocks could overwhelm the microphase-separated structure because of the weak segregation. In situ observation of crystal growth indicated that the nucleation process preferred to occur at the edge of the thick parts of the film, that is, the relief structures or droplets. The crystal growth rate was presented by the time dependence of the distance between the tip of crystal clusters and the edge. At 22 and 17 degreesC, the average crystal growth rates were 55 +/- 10 and 18 +/- 4 nm/min, respectively.
Resumo:
In a previous study, we reported observation of the novel inverted phase (the minority blocks comprising the continuum phase) in kinetically controlled phase separating solution-cast poly(styrene-b-butadiene-b-styrene) (SBS) triblock copolymer films [Zhang et al. Macromolecules 2000, 33, 9561-7]. In this study, we adopt the same approach to investigate the formation of inverted phase in a series of solution-cast poly(styrene-b-butadiene) (SB) asymmetric diblock copolymers having nearly equal polystyrene (PS) weight fraction (about 30 wt %) but different molecular weights. The microstructure of the solution-cast block copolymer films resulting from different solvent evaporation rates, R, was inspected, from which the kinetically frozen-in phase structures at qualitatively different block copolymer concentrations and correspondingly different effective interaction parameter, chieff, can be deduced. Our result shows that there is a threshold molecular weight or range of molecular weight below which the unusual inverted phase is accessible by controlling the solvent evaporation rate. In comparing the present result with that of our previous study on the SBS triblock copolymer, we find that the formation of the inverted phase has little bearing on the chain architecture. We performed numerical calculations for the free energy of block copolymer cylinders and found that the normal phase is always preferred irrespective of the interaction parameter and molecular weight, which suggests the formation of the inverted phase to have a kinetic origin.
Resumo:
Ultrathin multilayer films have been prepared by means of alternate adsorption of iron(Ill)-substituted heteropolytungstate anions and a cationic redox polymer on the 4-aminobenzoic acid modified glassy carbon electrode surface based on electrostatic layer-by-layer assembly. Cyclic voltammetry, electrochemical impedance spectroscopy and UV-Vis absorption spectrometry have been used to easily monitor the uniformity of thus-formed multilayer films. Especially, the electrochemical impedance spectroscopy is successfully used to monitor the multilayer deposition processes and is a very useful technique in the characterization of multilayer films because it provides valuable information about the interfacial impedance features. All these results reveal regular film growth with each layer adsorption. The resulting multilayer films can effectively catalyze the reduction of H2O2,NO2- and BrO3-.
Resumo:
A two-armed polymer with a crown ether core self-assembles to produce macroporous films with pores perpendicularly reaching through the film down to the substrate. A possible assembling mechanism is discussed. The pore size can be conveniently adjusted by changing the solution concentration. These through-hole macroporous films provide a template for fabricating an array of Cu nanoparticle aggregates.
Resumo:
The substrates with regular patterns of self-assembly monolayers (SAMs) produced by microcontact printing with octadecyltrichlorosilane (OTS) was employed to direct thin polystyrene dewetting to fabricate ordered micrometer scale pattern. The pattern sizes and pattern fashion can be manipulated by controlling the experimental parameters. The pattern formation mechanisms have been discussed. The dewetting pattern can be transferred to form PDMS stamp for future microfabrication process.
Resumo:
Novel composite resins possessing good luminescent properties have been synthesized through a free radical copolymerization of styrene, alpha-methylacrylic acid and the binary or ternary complexes of lanthanide ions (Eu3+ and Tb3+). These polymer-based composite resins not only possess good transparency and mechanical performance but also exhibit an intense narrow band emission of lanthanide complexes under UV excitation. We characterized the molecular structure, physical and mechanical performance, and luminescent properties of the composite resins. Spectra investigations indicate that alpha-methyl-acrylic acid act as both solubilizer and ligand. Photoluminescence measurements indicate that the lanthanide complexes show superior emission lines and higher intensities in the resin matrix than in the corresponding pure complex powders, which can be attributed to the restriction of molecular motion of complexes by the polymer chain networks and the exclusion of water molecules from the complex. We also found that the luminescence intensity decreased with increasing content of alpha-methylacrylic acid in the copolymer system. The lifetime of the lanthanide complexes also lengthened when they were incorporated in the polymer matrix. In addition, we found that the relationships between emission intensity and Tb (Eu) content exhibit some extent of concentration quenching.
Resumo:
Water soluble conducting polyaniline with electrical conductivity of 10(-1)-10(-2) S/cm was prepared employing dopant induced water solubility technology. The water resistance of the conducting film was significantly improved employing,sol-gel hybrids method, especially when the conductive polyaniline loading was below 30 wt%. The reason for the improvement is that the conducting polyaniline chains are confined in a stable inorganic network.
Resumo:
The morphologies and crystalline structures of melt-crystallized ultrathin isotactic poly(1-butene) films have been studied with transmission electron microscopy and electron diffraction. It is demonstrated that a bypass of form II crystallization can be achieved with an increase in its crystallization temperature. Electron microscopy observations show that melt-grown isotactic poly(1-butene) single crystals have a well-shaped hexagonal form, whereas form I crystals converted from form II display the morphologies of their tetragonal precursors. Electron diffraction results indicate that, instead of the twinned hexagonal pattern of the converted form I crystal, the directly formed form I single crystals exhibit an untwinned hexagonal pattern.
Resumo:
The surface morphology evolution of thin poly(styrene-block-ethylene/butylenes-block-styrene) (SEBS) triblock copolymer films as a function of the copolymer concentration was investigated by means of dynamic mode atomic force microscopy. At a relatively low copolymer concentration (0.025% w/v), the periodically orientated stripes were observed. This kind of surface patterning produced in the spin-coating process has not been reported in the literature before. It has been shown by our experiment that a shearing and stretching field can cause flexible polymer coils or aggregates to orientate during the spin coatings At a copolymer concentration of 0.05% w/v, SEBS molecule aggregates form network structures in the whole film. With further increase of the copolymer concentration, a continuous film with a microphase-separated structure was visualized.
Resumo:
We have employed several techniques, including cyclic voltammetry, UV-Vis spectrometry, small-angle X-ray diffraction, X-ray photoelectron spectroscopy and electrochemical impedance spectroscopy, to characterize the formation processes and interfacial features of ultrathin multilayer films of silicotungstate and a cationic redox polymer on cysteamine-coated Au electrodes self-assembled monolayers. All of these techniques confirm that the multilayer films are built up stepwise as well as uniformly in a layer-by-layer fashion. In particular, the electrochemical impedance spectroscopy is successfully used to monitor the multilayer deposition processes. It has been proved that the electrochemical impedance spectroscopy is a very useful technique in characterization of multilayer films because it provides valuable information about the interfacial impedance features.
Resumo:
Communication: Conducting semi-interpenetrating network composites with low conductivity percolation threshold were synthesized from waterborne conducting polyaniline (cPAn) and melamine-urea resin, A perfect network of cPAn in the composite was observed by means of TEM (see Figure). The conductivity stability of cPAn in water was improved by confining the chain mobility of cPAn via in-situ crosslinking of melamine-urea resin. Cyclic voltammetry of the composites reveals electrochemical activities and reversibilities similarly to those of pure cPAn.