346 resultados para ALKYL MONOLAYERS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A series of ansa-metallocene complexes with an allyl substituted silane bridge [(CH =CHCH2)CH3Si(C5H4)(2)]TiCl2 (1), [(CH2=CHCH2)CH3Si(C9H6)(2)]MCl2 [M = Ti (2), Zr (3), Hf (4)] and [(CH2=CHCH2)CH3Si(C13H8)(2)]ZrCl2 (6) have been synthesized and characterized. The molecular structure of 6 has been determined by X-ray crystallographic analysis. Complexes 1-4, 6 bearing allyl groups have been investigated as self-immobilized catalysts for ethylene polymerization in the presence of MMAO. The results showed that the self-immobilized catalysts 1-4, 6 kept high ethylene polymerization activities of ca. 10(6) g PE mol(-1) M h(-1) and high molecular weight (M-w approximate to 10(5)) of polyethylene.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We used colloidal An to enhance the amount of antibody immobilized on a gold electrode and ultimately monitored the interaction of antigen-antibody by impedance measurement. Self-assembly of 6 nm (diameter) colloidal An onto the self-assembled monolayers (SAMs) of 4-aminothiophenol modified gold electrode resulted in an easier attachment of antibody. The redox reactions of [Fe(CN)(6)](4-)/[Fe(CN)(6)](3-) on the gold surface were blocked due to the procedures of self-assembly of 4-aminothiophenol and antibody immobilization, which were investigated by cyclic voltammetry and impedance spectroscopy. The interaction of antigen with grafted antibody recognition layers was carried out by soaking the modified electrode into a phosphate buffer at pH 7.4 with various concentrations of antigen at 37 degreesC for 30 min. The antibody recognition layers and their interactions with various concentrations of antigen could be detected by measurements of the impedance change. The results show that this method has good correlation for detection of Hepatitis B virus surface antigen in the range of 0.5-200 mug/l and a detection limit of about 50 ng/l.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Colloidal Au particles have been deposited on the gold electrode through layer-by-layer self-assembly using cysteamine as cross-linkers. Self-assembly of colloidal Au on the gold electrode resulted in ail easier attachment of antibody, larger electrode surface and ideal electrode behavior. The redox reactions of [Fe(CN)(6)]-/[Fe(CN)(6)](3-) on the gold surface were blocked due to antibody immobilization, which were investigated by cyclic voltammetry and impedance spectroscopy. The interaction of antigen with grafted antibody recognition layers was carried out by soaking the modified electrode into a phosphate buffer at pH 7.0 with various concentrations of antigen at 37degreesC for 30 min. Further, an amplification strategy to use biotin conjugated antibody was introduced for improving the sensitivity of impedance measurements. Thus, the sensor based oil this immobilization method exhibits a large linear dynamic range, from 5 - 400 mug/L for detection of Human IgG. The detection limit is about 0.5 mug/L.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

By incorporating bio-specific receptors, such as p-10,12-pentacosadiyne-1-N-(3,6,9-trioxaundecylamide)-alpha-D-mannopyranoside (MPDA), into 10,12-pentacosadiyonic acid (PDA) monolayer, the MPDA/PDA monolayer underwent affinochromatic transition in response to the bacteria binding to the receptor. Here, we described a new method to study the membrane/macromolececular interaction between Escherichia coli (E coli) and mannose and its relative affinochromism by modifying MPDA/PDA with CdS nano-crystallites (MPDA/PDA-CdS). CdS not only triggered the strong tropism of the bacteria but also reduced the rigidity of the MPDA/PDA backbone, resulting in the enhanced affinochromism. This discovery might be of significance in basic biophysical studies of membrane/macromolececular and designing novel biosensor.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Novel Au-Pt bimetallic flower nanostructures fabricated on a polyamidoamine dendrimers-modified surface by electrodeposition are reported. These polyamidoamine dendrimers were stable, and they assisted the formation of Au-Pt bimetallic nanoflowers during the electrodeposition process. These nanoflowers were characterized by field-emitted scanning electron microscopy (FE-SEM), energy-dispersive spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), X-ray diffraction, and electrochemical methods. FE-SEM images showed that the bimetallic nanoflower included two parts: the "light" and the "pale" part. The two parts consisted of many small bimetallic nanoparticles, which was attributed to the progressive nucleation process. Moreover, the "light" part contained more bimetallic nanoparticles. The morphologies of bimetallic nanoflowers depended on the electrodeposition time and potential and the layer number of assembled dendrimers. The average size of nanoflowers increased with the increase in electrodeposition time. The layer number of assembled dendrimers obviously affected the size and morphologies of the "pale" parts of deposited nanoflowers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Flat-lying, densely packed DNA monolayers in which DNA chains are well organized have been successfully constructed on a mica surface by dropping a droplet of a DNA solution on a freshly cleaved mica surface and subsequently transferring the mica to ultrapure water for developing. The formation kinetics of such monolayers was studied by tapping mode atomic force microscopy (TMAFM) technique. A series of TMAFM images of DNA films obtained at various developing times show that before the sample was immersed into water for developing the DNA chains always seriously aggregated by contacting, crossing, or overlapping and formed large-scale networks on the mica surface. During developing, the fibers of DNA networks gradually dispersed into many smaller fibers up to single DNA chains. At the same time, the fibers or DNA chains also experienced rearrangement to decrease electrostatic repulsion and interfacial Gibbs free energy. Finally, a flat-lying, densely packed DNA monolayer was formed. A formation mechanism of the DNA monolayers was proposed that consists of aggregation, dispersion, and rearrangement. The effects of both DNA and Mg2+ concentration in the formation solution on DNA monolayer formation were also investigated in detail.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Didodecyldimethylammonium bromide (DDAB) lipid bilayer-protected gold nanoparticles (AuNPs), which were stable and hydrophilic, were synthesized by in situ reduction of HAuCl4 with NaBH4 in an aqueous medium in the presence of DDAB. As-prepared nanoparticles were characterized by UV-vis spectra, transmission electron microscopy, dynamic light scattering analysis, and X-ray photoelectron spectroscopy. All these data supported the formation of AuNPs. Fourier transform infrared spectroscopy (FTIR) and differential thermal analysis/thermogravimetric analysis data revealed that DDAB existed in a bilayer structure formed on the particle surface, resulting in a positively charged particle surface. The FTIR spectra also indicated that the DDAB bilayer coated on the surface of AuNPs was probably in the ordered gel phase with some end-gauche defects. On the basis of electrostatic interactions between such AuNPs and anionic polyelectrolyte poly(sodium 4-styrenesulfonate) (PSS), we successfully fabricated (PSS/AuNP)(n) multilayers on a cationic polyelectrolyte poly(ethylenimine) coated indium tin oxide substrate via the layer-by-layer self-assembly technique and characterized as-formed multilayers with UV-vis spectra and atomic force microscopy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The redox-induced conformational equilibrium of cytochrome c (cyt c) adsorbed on DNA-modified metal electrode and the interaction mechanism of DNA with cyt c have been studied by electrochemical, spectroscopic and spectroelectrochemical techniques. The results indicate that the external electric field induces potential-dependent coordination equilibrium of the adsorbed cyt c between its oxidized state (with native six-coordinate low-spin and non-native five-coordinate high-spin heme configuration) and its reduced state (with native six-coordinate low-spin heme configuration) on DNA-modified metal electrode. The strong interactions between DNA and cyt c induce the self-aggregation of cyt c adsorbed on DNA. The orientational distribution of cyt c adsorbed on DNA-modified metal electrode is potential-dependent, which results in the deviation from an ideal Nernstian behavior of the adsorbed cyt c at high electrode potentials. The electric-field-induced increase in the activation barrier of proton-transfer steps attributed to the rearrangement of the hydrogen bond network and the self-aggregation of cyt c upon adsorption on DNA-modified electrode strongly decrease the interfacial electron transfer rate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An effective electrogenerated chemiluminescence (ECL) sensor was developed by coimmobilization of the Ru(bpy)(2)(3+)-doped silica (RuDS) nanoparticles and carbon nanotubes (CNTs) on glassy carbon electrode through hydrophobic interaction. The uniform RuDS nanoparticles were prepared by a water-in-oil (W/O) microemulsion method and Ru(bpy)(3)(2+) doped inside could still maintain its high ECL efficiency. With such unique immobilization method, a great deal of Ru(bpy)(3)(2+) was immobilized three-dimensionally on the electrode , which could greatly enhance the ECL response and result in the increased sensitivity. On the other hand, CNTs played dual roles as matrix to immobilize RuDS nanoparticles and promoter to accelerate the electron transfer between Ru(bpy)(3)(2+) and the electrode. The as-prepared ECL sensor displayed good sensitivity and stability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A composite film composed of porous polyurethane (PU) and polystyrene (PS) microspheres with both superhydrophobicity and superoleophilicity has been prepared. In this film, the dual-scale structure enhances both the hydrophobicity and oleophilicity of the surface material. The composite film with such an 'intelligent' wettability property can be utilized to separate oil and water systems efficiently.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel strategy to construct a sensitive mediatorless sensor of H2O2 was described. At first, a cleaned gold electrode was immersed in thiol-functionalized poly(styrene-co-acrylic acid) (St-co-AA) nanosphere latex prepared by emulsifier-free emulsion polymerization St with AA and function with dithioglycol to assemble the nanospheres, then gold nanoparticles were chemisorbed onto the thiol groups and formed monolayers on the surface of poly(St-co-AA) nanospheres. Finally, horseradish peroxidase (HRP) was immobilized on the surface of the gold nanoparticles. The sensor displayed an excellent electrocatalytical response to reduction of H2O2 without the aid of an electron mediator. The biosensor showed a linear range of 8.0 mu mol L-1-7.0 mmol L-1 with a detection limit of 4.0 mu mol L-1. The biosensor retained more than 97.8% of its original activity after 60 days' storage. Moreover, the studied biosensor exhibited good current reproducibility and good fabrication reproducibility.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel third-generation hydrogen peroxide (H2O2) biosensor was developed by immobilizing horseradish peroxidase (HRP) on a biocompatible gold electrode modified with a well-ordered, self-assembled DNA film. Cysteamine was first self-assembled on a gold electrode to provide an interface for the assembly of DNA molecules. Then DNA was chemisorbed onto the self-assembled monolayers (SAMs) of cysteamine to form a network by controlling DNA concentration. The DNA-network film obtained provided a biocompatible microenvironment for enzyme molecules, greatly amplified the coverage of HRP molecules on the electrode surface, and most importantly could act as a charge carrier which facilitated the electron transfer between HRP and the electrode. Finally, HRP was adsorbed on the DNA-network film. The process of the biosensor construction was followed by atomic force microscopy (AFM). Voltammetric and time-based amperometric techniques were employed to characterize the properties of the biosensor derived. The enzyme electrode achieved 95% of the steady-state current within 2 s and had a 0.5 mu mol l(-1) detection limit of H2O2. Furthermore, the biosensor showed high sensitivity, good reproducibility, and excellent long-term stability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Multilayers of anionic phosphotungstic acid (PTA) clusters and positively charged protonated poly(allylamine hydrochloride) (PAH) were assembled by layer-by-layer self-assembled method on Au electrode modified by 3-mercaptopropionic acid (3-MPA). The effect of the charge of the surface of the multilayer assembly on the kinetics of the charge transfer reaction was studied by using the redox probes [Fe(CN)(6)](3-)/(4-) [Ru(NH3)(6)](2+/3+). The cyclic voltammetry experiments showed that the peak currents and peak-to-peak potential differences changed after assembling different layers on the electrode surface indicating that the charge of the surface has a significant effect on the kinetics of the studied charge transfer reactions. These reactions were studied in more detail by electrochemical impedance spectroscopy. When [Fe(CN)(6)](3-/-) was used as the redox label, multilayers that terminated with negatively charged PTA showed a high charge transfer resistance but multilayers that terminated with positively charged PAH showed lower charge transfer resistance. With [Ru(NH3)(6)](2+/3+) as the redox label, the charge transfer resistance at multilayers that terminated with positively charged PAH was much higher than at the multilayer terminated by the negatively charged PTA.