326 resultados para 765-6
Resumo:
The non-covalent complexes between three flavonoid glycosides (quercitrin, hyperoside and rutin) and heptakis(2,6-di-O-methyl)-beta-cyclodextrin (DM-beta-CD) were investigated by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI-FTICR-MS). The 1:1 complexation of each flavonoid glycoside (guest) to the DM-beta-CD (host) was monitored in the negative ion mode by mixing each guest with an up to 30-fold molar excess of the host. The binding constants for all complexes were calculated by a linear equation in the order: DM-beta-CD:quercitrin > DM-beta-CD:rutin > DM-beta-CD:hyperoside. A binding model for the complexes has also been proposed based on the binding constants and tandem mass spectrometric data of these complexes.
Resumo:
A new initiator for atom transfer radical polymerization (ATRP), (Cl-2 HCCOO)(3) -C-6 H-3, (TrDCAP),has been designed and successfully synthesized. ATRP of styrene was carried out by using TrDCAP as hexafunctional initiator and the CuCl/bpy catalyst at 130 degrees C in 30% THF via core-first strategy. The Arm-6 PS-AAP was synthesized by etherealization of Arm-6 PS and 4-(4'-methoxyphenylazomethine) phenol (AAP). The initiator and the architectures of the Arm-6 PS were confirmed by H-1-NMR, FT-IR, UV-Vis and GPC.
Resumo:
A novel supramolecular compound 1,6-hexanediamine trimolybdate ((C6H18N2[Mo3O10], denoted as HDAMo) has been synthesized by a hydrothermal method and its structure has been characterized by elemental analyses, Fourier transform infrared (FT-IR) spectra, single-crystal X-ray diffraction (XRD) technique. This single crystal compound consists of protonated 1,6-hexanediamine (HDA) cations and polyoxometalate [Mo3O10](2-) anions. Its crystal structure belongs to monoclinic system (space group P2(1)/n) with a = 7.7508(14), b = 11.467(2), c = 16.167(3) angstrom, beta = 92.689(3)degrees, V = 143 5.3(5) angstrom(3), Z = 4 and D-ealc = 2.619 g cm(-3). The final statistics based on F-2 are GOF = 0.980, R-1 = 0.0261 and wR(2) = 0.0506 for I > 2 sigma(I). XRD analysis revealed that in the crystal structure of HDAMo, novel infinite [Mo3O10](2-) chains parallel to a axis are made up of distorted MoO6 octahedra connected by corners and edges. The protonated HDA cations occupy channels formed by [Mo(3)O3(10)](2-) Chains and exhibit strong hydrogen bond interactions to terminal and bridging oxo groups of the chains. The [Mo3O10](2-) chains linked through protonated HAD cations formed a one-dimensional network. The HDAMo compound shows novel photochromic properties, i.e., its color changes from white to reddish brown gradually under UV irradiation. XRD, FT-IR, ESR spectra and XPS are used to investigate the photochromic behavior of the compound.
Resumo:
Polyamide- 6(PA 6)/polytetrafluoroethylene is studied as a potential gate dielectric for flexible organic thin film transistors. The same method used for the formation of organic semiconductor and gate dielectric films greatly simplifies the fabrication process of devices. The fabricated transistors show good electrical characteristics. Ambipolar behaviour is observed even when the device is operated in air.
Resumo:
Non-isothermal crystallisation kinetics of a polyamide 6/mesoporous silica nanocomposite (PA6-MS) has been investigated by differential scanning calorimetry (DSC) at different cooling rates. Mandelkern, Jeziorny-Ziabicki and Ozawa methods were applied to describe this crystallisation process. The analyses show that the mesoporous silica particles act as nucleating agents in the composite and that the Avrami exponent n varies from 3.0 to 4.6. The addition of mesoporous silica influenced the mechanism of nucleation and the growth of polyamide 6 (PA6) crystallites.
Resumo:
Well-ordered nanostructured polymeric supramolecular thin films were fabricated from the supramolecular assembly of poly(styrene-block-4-vinylpyridine) (PS-b-P4VP)(H+) and poly(methyl methacrylate)-dibenzo-18-crown-6-poly(methyl methacrylate) (PMCMA). A depression Of cylindrical nanodomains was formed by the block of P4VP(H+) and PMCMA associates surrounded by PS. The repulsive force aroused from the incompatibility between the block of P4VP(H+) and PMCMA was varied through changing the molecule weight (M-w) of PMCMA, the volume fraction of the block of P4VP(H+), and annealing the film at high temperature. Increasing the repulsive force led to a change of overall morphology from ordered nanoporous to featureless structures. The effects of solvent nature and evaporation rate on the film morphology were also investigated. Further evolution of surface morphologies from nanoporous to featureless to nanoporous structures was observed upon exposure to carbon bisulfide vapors for different treatment periods. The wettability of the film surface was changed from hydrophilicity to hydrophobicity due to the changes of the film surface microscopic composition.
Resumo:
A facile and efficient one-pot synthesis of highly substituted pyridin-2(IH)-ones was developed via Vilsmeier-Haack reactions of readily available enaminones, 2-arylamino-3-acetyl-5,6-dihydro-4H-pyrans, and a mechanism involving sequential ring-opening, haloformylation, and intramolecular nucleophilic cyclization reactions is proposed.
Resumo:
A series of new 1,1'-bi-2-naphthol (BINOL) derived ligands, 3-[6-(hydroxymethyl)pyridin-2-yl]-BINOLs or 3,3'-bis[6(hydroxymethyl)pyridin-2-yl]-BINOLs, bearing one or two chiral pyridinylmetlianols attached to a binaphthyl skeleton, have been synthesized using the Suzuki cross-coupling reaction. The resulting compounds have been used as ligands in the enantioselective addition of diethylzinc to aldehydes; the products were obtained with up to 96% ee.
Resumo:
Dithiols of N-hexadecyl-3,6-di(p-mercaptophenylacetylene)carbazole (HDMC) have been synthesized and employed to form self-assembled monolayers (SAMs) on gold. One characteristic of the HDMC molecule is its peculiar molecular structure consisting of a large and rigid headgroup and a small and flexible alkyl-chain tail. HDMC adsorbates can attach to gold substrates by a strong Au-S bond with weak van der Waals interactions between the alkyl-chain tails, leading to a loosely packed hydrophobic SAM. In this way we can couple hybrid bilayer membranes (HBMs) to gold surfaces with more likeness to a cell bilayer than the conventional HBMs based on densely packed long-chain alkanethiol SAMs. The insulating properties and stability of the HDMC monolayer as well as the HDMC/lipid bilayer on gold have been investigated by electrochemical techniques including cyclic voltammetry and impedance spectroscopy. To test whether the quality of the bilayer is sufficiently high for biomimetic research, we incorporated the pore-forming protein a-hemolysin) and the horseradish peroxidase into the bilayers, respectively.
Resumo:
Reaction of 2,6-pyridinedicarboxylic with CoCl2 . 6H(2)O in aqueous solution give rise to a three-dimensional Complex CO2(2,6-DPC)(2)Co(H2O)(5).2H(2)O (DPC = 2,6-pyridinedicarboxylate) 1. It has been characterized by elemental analyses, infrared spectra (IR) spectrum, thermogravimetric (TG) analysis, EPR spectrum, and single crystal X-ray diffraction. The complex crystallizes in the P2(1)/c space group with a = 8.3906(3) Angstrom, b = 27.4005(8) Angstrom, c = 9.6192(4) A, alpha = 90.00degrees, beta = 98.327(2)degrees, gamma = 90.00degrees, V = 2188.20(14) Angstrom(3), Z = 4. There are two types of cobalt environments: Co(1) is coordinated by four oxygen atoms from four carboxyl groups and two nitrogen 2 atoms which are all from pdc(2). Co(2) is coordinated by six oxygen atoms, five from coordinated water molecules and one from a carboxyl of pdc(2) - of which the other oxygen atom is linked to the Co(1). The extensive intermolecular hydrogen bonds are formed in the crystal by means of the five coordinated water molecules.
Resumo:
The mechanical and thermal properties of glass bead-filled nylon-6 were studied by dynamic mechanical analysis (DMA), tensile testing, Izod impact, thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC) tests. DMA results showed that the incorporation of glass beads could lead to a substantial increase of the glass-transition temperature (T-g) of the blend, indicating that there existed strong interaction between glass beads and the nylon-6 matrix. Results of further calculation revealed that the average interaction between glass beads and the nylon-6 matrix deceased with increasing glass bead content as a result of the coalescence of glass beads. This conclusion was supported by SEM observations. Impact testing revealed that the notch Izod impact strength of nylon-6/glass bead blends substantially decreased with increasing glass bead content. Moreover, static tensile measurements implied that the Young's modulus of the nylon-6/glass bead blends increased considerably, whereas the tensile strength clearly decreased with increasing glass bead content.
Resumo:
Using CaCO3, metal oxides (all dissolved by nitric acid) and tetraethoxysilane Si(OC2H5)(4) (TEOS) as the main starting materials, Ca2R8(SiO4)(6)O-2:A (R = Y, La, Gd; A = EU3+, Tb3+) phosphor films have been dip-coated on quartz glass substrates through the sol-gel process. X-ray diffraction (XRD), atomic force microscope (AFM), scanning electron microscope (SEM) and photoluminescence (PL) spectra as well as lifetimes were used to characterize the resulting films. The results of XRD indicated that the 1000 degreesC annealed films are isomorphous and crystallize with the silicate oxyapatite structure. AFM and SEM studies revealed that the phosphor films consisted of homogeneous particles ranging from 30 to 90 nm, with an average thickness of 1.30 mum. The Eu3+ and Tb3+ show similar spectral properties independent of R 3, in the films due to their isomorphous crystal structures. However, both the emission intensity and lifetimes of Eu3+ and Tb3+ in Ca2R8(SiO4)(6)O-2 (R = Y, La, Gd) films decrease in the sequence of R = Gd > R = Y > R = La, which have been explained in accordance with the crystal structures.
Resumo:
Ca2Gd8(SiO4)(6)O-2: A(A = Ph2+, Tm3+) phosphors were prepared through the sol-gel process. X-ray diffraction (XRD), scanning electron microseopy(SEM) and photoluminescence spectra were used to characterize the resulting phosphors. The results of XRD indicate that the phosphors crystallized completely at 1000 degreesC. SEM study reveals that the average grain size is 300 similar to 1000 nm. In Ca2Gd8(SiO4)(6)O-2: Tm3+ phosphors, the Tm3+ shows its characteristic blue emission at 456 nm (D-1(2)-F-3(4)) upon excitation into its H-3(6)-D-1(2)(361 nm), with an optimum doping concentration of 1 mol% of Gd3+ in the host lattices. In Ca2Gd8(SiO4)(6)O-2: Pb2+, Tm3+ phosphors, excitation into the Ph2+ at 266 nm (S-1(0)-P-3(1)) yields the emissions of Gd3+ at 311 nm (P-6-S-8) and Tm3+ at 367 nm (D-1(2)-H-3(6)) and 456 our (D-1(2)-F-3(4)), indicating that energy transfer processes of Pb2+-Gd3+ and Ph2+-Tm3+ have occur-red in the host lattices.