413 resultados para crystallization kinetics
Resumo:
The production of ethylbenzene from the alkylation of dilute ethylene in fee off-gases with benzene has been commercialized in China over a newly developed catalyst composed of ZSM-5/ZSM-11 co-crystallized zeolite. The duration of an operation cycle of the commercial catalyst could be as long as 180 days. The conversion of ethylene could attain higher than 95%, while the amount of coke deposited on the catalyst was only about 10 wt.%. Thermogravimetry (TG) was used to study the coking behavior of the catalyst during the alkylation of fee off-gas with benzene to ethylbenzene. Based on effects of reaction time, reaction temperature, reactants and products on coking during the alkylation process, it is found that the coking rate during the alkylation procedure follows the order: ethylbenzene > ethylene > propylene > benzene for single component, and benzene-ethylene > benzene-propylene for bi-components under the same reaction condition. Furthermore, the coking kinetic equations for benzene-ethylene, benzene-propylene and ethylbenzene were established. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
The Al-pillared clay catalyst obtained by exposing activated clay powder to sulfuric acid and aluminium salts and calcining in air at 373-673 K, was found to be highly active for the title reaction. The results indicated that pillared layer clay of the mixed oxide has been employed as parent catalysts for their definite structure and special properties which can be modified by the substitution of L and B acid sites cations. Solid acid catalyst of Supported aluminium was found to be highly active and selective at the 373-473 K temperature range for heterogeneous esterification. The activity is mainly attributed to the Lewis (and a considerably small number of Bronsted) acid sites whose number and strength increased due to pillaring. The water produced in the esterification can be induced by Al3+, which makes the catalyst surface to form strong B acid. Their acidities are obtained by pH measurement. If only B acid sites are > 70%, and pH < 1 in the 2-ethoxyethanol, there exists an activity of esterification. The used catalyst gave identical results with that of the fresh one. X-ray diffraction spectra show that the composition and active phase of the used catalysts are the same as the fresh ones. The kinetic study of the reaction was carried out by an integral method of analysis. The kinetic equation of surface esterification is y = 2.36x - 0.98.
Resumo:
In this study of the synthesis of SAPO-34 molecular sieves, XRD, SEM, XRF, IR and NMR techniques were applied to monitor the crystalloid, structure and composition changes of the samples in the whole crystallization process in order to get evidence for the crystallization as well as Si incorporation mechanism of SATO-34. XRD results revealed that the crystallization contained two stages. In the first 2.5 h (the earlier stage), high up to similar to80% of relative crystallinity could be achieved and the crystal size of SAPO-34 was almost the same as that of any longer time, indicating a fast crystallization feature of the synthesis. In this stage, IR revealed that the formation of SAPO-34 framework structure was accompanied by the diminution of hydroxyls, suggesting that crystal nuclei of SAPO-34 may arise from the structure rearrangement of the initial gel and the condensation of the hydroxyls. NMR results reveal that the template and the ageing period are crucial for the later crystallization of SAPO-34. Preliminary structure units similar to the framework of SAPO-34 have already formed before the crystallization began (0 h and low temperature). Evidence from IR, NMR, and XRF shows that the formation of the SAPO-34 may be a type of gel conversion mechanism, the solution support and the appropriate solution circumstance are two important parameters of the crystallization of SAPO-34. Meanwhile, NMR measurements demonstrated that about 80% of total Si atoms directly take part in the formation of the crystal nuclei as well as in the growth of the crystal grains in the earlier stage (<2.5 h). Evidence tends to support that Si incorporation is by direct participation mechanism rather than by the Si substitution mechanism for P in this stage (<2.5 h). In the later stage (>2.5 h), the relative content of Si increased slightly with a little decrease of Al and P. The increase of Si(4Al) and the appearance of the Si(3Al), Si(2Al), Si(1Al) and Si(OAl) in this stage suggest that substitution of the Si atoms for the phosphorus and for the phosphorus and aluminum pair takes place in the crystallization. The relationship among structure, acidity and crystallization process is established, which suggests a possibility to improve the acidity and catalytic properties by choosing a optimum crystallization time, thus controlling the number and distribution of Si in the framework of SAPO-34. (C) 2002 Elsevier Science Inc. All rights reserved.
Resumo:
Thermal properties and crystallization-behavior of ultrafine fully-vulcanized powdered rubber (UFPR) toughened poly propylene (PP) were studied by Differential scanning calorimetry (DSC) and Wide angle X-ray diffraction (WAXD) measurements. It was found that the fraction of beta-form in the PP crystal increased at first, then sharply deceased up to zero with increasing UFPR content
Resumo:
In this paper, the confined crystallization and phase transition behaviors of n-octadecane in microcapsules with a diameter of about 3 Pm were studied with the combination of differential scanning calorimetry (DSC), temperature dependent Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD).
Resumo:
Morphologies, crystallization behavior and mechanical properties of polypropylene(PP)/syndiotactic 1,2-polybutadiene(s-1,2 PB) blends were investigated. Morphology observation shows the well dispersed domains of s-1,2 PB in PP matrix with the rather small domain sizes from 0.1 to 0.5 mu m when the s-1,2 PB content increases from 5% to 20% (mass fraction) in the blends, and the phase structure tends to become co-continuous as s-1,2 PB content further increases.
Resumo:
Structure and crystallization behavior of amorphous and quasicrystalline Ti45Zr35Ni17Cu3 alloy have been studied. DSC trace of the amorphous alloy obtained during continuous heating to 1300 K shows distinctly an exothermic peak and two endothermic peaks.
Resumo:
A method was adopted to fix a series of polymers of PE-b-PEO with different PEO/PE segments on the chains of LLDPE. Maleic anhydride (MA) reacting with hydroxyl group of PE-b-PEO (mPE-b-PEO) was used as the intermediate. The structures of intermediates and graft copolymers were approved by H-1 NMR and FTIR. XPS analysis revealed a great amount of oxygen on the surface of grafted copolymers although the end group of PEO was fixed on the LLDPE chains through MA. Thermal properties of the graft copolymers as determined by differential scanning calorimetry (DSC) showed that PE segments in the grafted monomers could promote the heterogeneous nucleation of the polymer, increase T., and crystal growth rate.
Resumo:
The crystallization behaviors and morphology of asymmetric crystalline-crystalline diblock copolymers poly(ethylene oxide-lactide) (PEO-b-PLLA) were investigated using differential scanning calorimetry (DSC), wide angle X-ray diffraction (WAXD), and microscopic techniques (polarized optical microscopy (POM) and atomic force microscopy (AFM)). Both blocks of PEO5-b-PLLA(16) can be crystallized, which was confirmed by WAXD, while PEO block in PEO5-b-PLLA(30) is difficult to crystallize because of the confinement induced by the high glass transition temperature and crystallization of PLLA block with the microphase separation of the block copolymer.