373 resultados para cefaclor determination
Resumo:
We described here a new method for the determination of total calcium in plasma. The method is based on the precipitation of calcium with excess oxalate and the measurement of residual oxalate by flow injection analysis with Ru(bpy)(3)(2+) electrochemiluminescent detection. It has the advantages of extremely stable reagent, user-friendly instrument, high selectivity, good analytical recovery, wide dynamic range, and nice correlation with atomic absorption spectroscopy. The calibration plot for calcium is linear over a concentration range from 0.5 mmol L-1 to 4.8 mmol L-1, which is wider than those obtained by most other methods. The analytical recoveries for plasma calcium are 98.4-101.2% with coefficients of variation (CVs) of 1.96-2.52%. The within-day CVs range from 0.76% to 0.95%, and between-day CVs were from 1.12% to 1.46%. The time for each injection is one minute. Because the proposed method can be readily carried out on increasingly popular instruments for Ru(bpy)(3)(2+) ECL immunoassays and DNA probe assays, Ru(bpy)32+ ECL method is suitable for routine clinical analysis of calcium.
Resumo:
The determination of Nb and Ta in Nb-Ta minerals was accomplished by slurry nebulization inductively coupled plasma optical emission spectrometry (ICP-OES), using a clog-free V-groove ceramic nebulizer. Samples were first wet-ground to appropriate particle sizes with narrow size distribution and 90% of the particles in the slurry were smaller than 2.32 mu m in diameter. Subsamples were then dispersed in pH 9 aqueous solutions, and agitated in an ultrasonic bath for 15 min prior to analysis. Due to the lack of slurry standards matching well with the samples, calibration was simply carried out using aqueous solution standards. Results were compared with those obtained from a conventional fusion decomposition procedure and acid digestion procedures and a good agreement between the measured and referred values was obtained. The technique provided a good alternative for the rapid determination of Nb and/or Ta in their corresponding minerals.
Resumo:
The present study reports an application of the searching combination moving window partial least squares (SCMWPLS) algorithm to the determination of ethenzamide and acetoaminophen in quaternary powdered samples by near infrared (NIR) spectroscopy. Another purpose of the study was to examine the instrumentation effects of spectral resolution and signal-to-noise ratio of the Buchi NIRLab N-200 FT-NIR spectrometer equipped with an InGaAs detector. The informative spectral intervals of NIR spectra of a series of quaternary powdered mixture samples were first located for ethenzamide and acetoaminophen by use of moving window partial least squares regression (MWPLSR). Then, these located spectral intervals were further optimised by SCMWPLS for subsequent partial least squares (PLS) model development. The improved results are attributed to both the less complex PLS models and to higher accuracy of predicted concentrations of ethenzamide and acetoaminophen in the optimised informative spectral intervals that are featured by NIR bands. At the same time, SCMWPLS is also demonstrated as a viable route for wavelength selection.
Resumo:
In this work, a method was established for the determination of impurities in high purity tellurium by inductively coupled plasma mass spectrometry (ICP-MS) after Fe(OH)(3) coprecipitation. After comparison of coprecipitation ability and separation efficiency between Fe(OH), and Al(OH)(3), Fe(OH)(3) was chosen as the precipitate. A separation factor of 160 for 200 mg tellurium was obtained under conditions of pH 9 and 2 mg of Fe3(+). The 13 elements, such as Bi, Sn, Pb, In, Tl, Cd, Cu, Co, Ni, Zn, Ti, Be and Zr, could be almost completely coprecipitated under these conditions. In addition, Te memory effect imposed on the ICP-MS instrument was assessed, as well as Te matrix effect that caused the low recovery of Ga, As, Sb and V in real sample was discussed. Finally, the method was evaluated through recovery test and was applied to practical sample analysis, with detection limits of most of the elements being below 0.15 mug g(-1) and R.S.D. below or at approximately 10%, which indicated that this method could fully satisfy the requirements for analysis of 99.999% similar to 99.9999% high purity Te.
Resumo:
Tramadol and lidocaine, used as analgesic and local anesthetic in surgery, are partly excreted by kidney. For the first time, we developed a simple and sensitive method, based on capillary electrophoresis with electrochemiluminescence (ECL) detection by end column mode without joint to monitor tramadol and lidocaine in urine. To eliminate the influence of ionic strength of urine sample, analytes were extracted by ether. Tripropylamine (TPA) was used as internal standard. ne recoveries of tramadol and lidocaine were between 94% and 97% at different levels. The method exhibited the linear range for the tramadol and lidocaine from 1.0 X 10(-7) to 1.0 X 10(-4) mol/L with correlation efficient of 0.998. The relative standard deviation (RSD) was 2.9% and 2.7% (n = 8) for tramadol and lidocaine, respectively. The limit of detection (LOD) was 6.0 x 10(-8) mol/L and 4.5 x 10(-8), mol/L (S/N = 3) for tramadol and lidocaine, respectively. The application for detecting tramadol and lidocaine in urine of patients showed that the method was valuable in clinical and biochemical laboratories for detecting tramadol, lidocaine and other tertiary amine pharmaceuticals for various purpose, such as metabolism investigation.
Resumo:
Stable films of didodecyldimethylammonium bromide (DDAB, a synthetic lipid) and horseradish peroxidase (HRP) were made by casting the mixture of the aqueous vesicle of DDAB and HRP onto the glassy carbon (GC) electrode. The direct electron transfer between electrode and HRP immobilized in lipid film has been demonstrated. The lipid films were used to supply a biological environment resembling biomembrane on the surface of the electrode. A pair of redox peaks attributed to the direct redox reaction of HRP were observed in the phosphate buffer solution (pH 5.5). The cathodic peak current increased dramatically while anodic peak decreased by addition of small amount H2O2. The pH effect on amperometric response to H2O2 was studied. The biosensor also exhibited fast response (5 s), good stability and reproducibility.
Resumo:
The biogenic amines, putrescine, cadaverine, spermidine and spermine were separated and quantified by capillary electrophoresis with pulsed amperometric detection. Detection potential of the pulsed amperometric detection was optimized as 0.6 V Optimal separation of the biogenic amines was achieved using a separation buffer of 30 mM citrate at pH 3.5, while keeping the buffer in the detection cell as 20 mM NaOH. Using these conditions, the four biogenic amines were baseline separated. Extrapolated limits of detection for putrescine, cadaverime, spermidine and spermine were 400, 200, 100 and 400 nM for the standard mixture (polyamines dissolved in running buffer), respectively. These are lower than ultraviolet detection and comparable or even lower than laser-induced fluorescence detection results as reported in the literature. The number of theoretical plates was maintained at the 105 level, which is absolutely higher than any reported method. When applying capillary electrophoresis-pulsed amperometric detection to milk analysis, only spermidine was found in amounts varying between 0.1 and 0.5 mg/kg.
Resumo:
Tris(2,2'-bipyridyl)ruthenium(II) electrochemiluminescence detection in a capillary electrophoresis separation system was used for the determination of diphenhydramine. In this study, platinum disk electrode (300 mum in diameter) was used as a working electrode and the influence of applied potential and buffer conditions were investigated. Under optimal conditions: 1.2 V applied potential, pH 8.50, 15 kV separation voltage and 10 mmol l(-1) running buffer, the calibration curve of diphenhydramine was linear over the range of 4 x 10(-8) to 1 x 10(-5) Mol l(-1). This technique gave satisfactory precision, and relative standard deviations of migration times and chemiluminescence peak intensities were less than 1 and 6%, respectively. The technique was applied to animal studies for determination of diphenhydramine extracted from rabbit plasma and urine samples, and the extraction efficiency were between 92 and 98.5%.
Resumo:
Flow-mode static and dynamic laser light scattering (SLS/DLS) studies of polymers, including polystyrene, polyethylene, polypropylene and poly(dimethylsiloxane) (PDMS), in 1,2,4-trichlorobenzene (TCB) at 150 degreesC were performed on a high temperature gel permeation chromatography (GPC) coupled with a SLS/DLS detector. Both absolute molecular weight (M) and molecular sizes (radius of gyration, R-g and hydrodynamic radius, R-h) of polymers eluting from the GPC columns were obtained simultaneously. The conformation of different polymers in TCB at 150 degreesC were discussed according to the scaling relationships between R-g, R-h and M and the rho-ratio (p = R-g/R-h). Flow-mode DLS results of PDMS were verified by batch-mode DLS study of the same sample. The presented technique was proved to be a convenient and quick method to study the shape and conformation of polymers in solution at high temperature. However, the flow-mode DLS was only applicable for high molecular weight polymers with a higher refractive index increment such as PDMS.
Resumo:
A flow-injection electrochemiluminescent method for L-cysteine determination has been developed based on its enhancement of the electrochemiluminecence of luminol at a glassy carbon electrode. This method is simple and sensitive for cysteine determination. Under the selected experimental parameters, the linear range for cysteine concentration was 1.0 x 10(-6) - 5.0 x 10(-5) mol/l, and the detection limit was 0.67 mumol/l (SIN = 3). The relative standard deviation for 11 measurements of 1.0 x 10(-5) mol/l cysteine was 4.5%. The proposed method has been applied to. the detection of cysteine in pharmaceutical injections with satisfactory results.
Resumo:
A method was developed for the determination of micro mercury in the soil, plants and the traditional Chinese medicine using flow injection quartz tube-atomic absorption spectrometry. The effect of the factors such as acidity,. the carrier solution, the flow rate of reductive solution and argon gas, etc. on the determination was studied. When vanadic oxide, nitric acid and sulfuric acid were used to decompose the sample reliable result could be obtained. The characteristic mass of the method is 59 pg, the detection limit is 0.028 mug/L, RSD is < 3.9% and the recovery is in the range of 94% &SIM; 102%.
Resumo:
A flow injection method has been developed for the determination of dopamine based on its inhibition of the electrochemiluminescence of luminol. This method is simple and sensitive for dopamine detection. Under the selected experimental conditions, the decreased electrochemiluminescent intensity is linear with dopamine concentration in the range of 5.0 x 10(-8)-1.0 x 10(-5) mol/L with a detection limit of 30 nmol/L. The relative standard deviation of eleven determinations is 1.9% for 1.0 x 10(-6) mol/L dopamine. The proposed method has been applied to the detection of dopamine in pharmaceutical injections with satisfactory results.
Resumo:
A method for the determination of Au, Pt and Pd in geological samples is described. Au, Pt and Pd can be separated and concentrated quantitatively by C-410 anion-exchange resin in the condition of 1.5 mol/L HCl with the adsorption rates of 91.2%, 100.0% and 95.7% respectively. No interference exists from coexisting elements except for Ge(IV), Cr(VI),Ti(IV) in inductively coupled plasma-mass spectrometry. The detection limits are 0.27 mug/L, 0.40 mug/L and 0.19 mug/L for Au, Pt and Pd respectively. The results of these elements in standard geological materials are in agreement with certified values with precision of 19.2% RSD for Au (n = 8), 28.1% RSD for Pt (n=8), and 15.6% RSD for Pd (n=8).
Resumo:
Sodium dodecyl sulfate(SDS) is a powerful solubilizing detergent which is often used during the separation of highly complex protein mixtures by one- or two-dimensional (2D) gel electrophoresis. Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is a widely used technique for mass spectrometric analysis of some protein molecules compared to other techniques. But the presence of SDS or some salts usually leads to signal deterioration when using MALDI-MS. A method for using nitrocellulose membrane as the solid-phase carrier combined with n-octyl-beta-D-glucopyranoside in the matrix highly enhances the sensitivity of the molecular mass determination of lysozyme. This technique has the advantage that the signal-to-noise of the molecular weight profile is improved compared with the mass spectrum and the profile is relatively easy to interpret.
Resumo:
The acid effects of some proteins on measuring their molecular weights were studied using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry ( MALDI-TOF-MS) and electrospray ionization mass spectrometry (ESI-MS). It was found that the signal intensity was enhanced through adjusting the acid concentration in some protein samples. In this paper, both MALDI-MS and ESI-MS was applied to examine the molecular weights of several standard proteins. And the proper acid concentration was detected in these spectra. In the meanwhile, it demonstrates that some associations of proteins in solution can be preserved into the gas phase and observed by the "soft ionization" mass spectrometry.