213 resultados para SiSb phase change film
Resumo:
The energy transfer in a blend film of poly 3-(2-(5-chlorobenzotriazolo) ethyl) thiophene (PCSET) and polyvinylcarzole (PVK) was investigated. The UV-VIS and photoluminescence (PL) results suggest that the energy transfer from PVK to PCBET leads to the enhancement of PL emission of PCBET. The AFM and LMF results indicated that the domains of blend polymer film are of micro-meter size. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
A liquid crystalline (LC) copolyether has been synthesized from 1-(4-hydroxy-4'-biphenyl)-2-(4-hydroxyphenyl)propane with 1,7-dibromoheptane and 1,11-dibromoundecane with a 50/50 (both in %) equal composition of the 7- and 11-methylene monomers [coTPP-7/11(5/5)]. A mono-domain with a homeotropic alignment can be induced by a thin film surface in the LC phase. When an electrostatic field is applied to the surface-induced mono-domains parallel to the thin film surface normal, the molecular alignment undergoes a change from the homeotropic to uniaxial homogeneous arrangement. However, when the field is applied to a direction perpendicular to the thin film surface normal. the molecular alignment is about 10 degrees -tilt with respect to the homeotropic alignment toward the a*-axis. This is because the permanent dipole moment of the copolyether is not right vertical to the molecular direction. The calculation of molecular dipoles indicates that the permanent dipole moment of this copolyether is about 70 degrees away from the molecular axis, which leads to a negative dielectric anisotropy. It is speculated that the 10 degrees- rather than 20 degrees -tilt is due to a balance between the alignment induced by the electrostatic field and the surface. In the electrostatic field, molecules are subjected to a torque tau, which is determined by the permanent dipole moment P and the electrostatic field E: tau = P x E. The molecular realignment in both parallel and perpendicular directions to the thin film surface normal is determined by satisfying the condition of tau = P x E = 0. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
A poly(methyloctadecylsilane) oligomer was synthesized by a typical Wurtz coupling reaction. Upon cooling, three transitions were observed at temperatures of 39.9, 37.5 and 33.9 degreesC at a rate of 2.5 degreesC/min in differential scanning calorimetry (DSC). The first transition, with enthalpy change of 0.47 kT/mol and supercooling of 0.2 degreesC, was characteristic of the conformational change in the Si-Si backbone into an all-trans conformation, which was detected by temperature-dependent Fourier transform infrared (FT-FR) spectroscopy. The second and the third transitions with large supercooling were identified as the formation of two-dimensional hexagonal crystal packing and three-dimensional two-chain orthorhombic crystal packing, respectively. The crystal structure was determined by the combination of WAXD and transmission electron microscopy (TEM) experiments. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
Stable lipid film was made by casting lipid in chloroform onto a glassy carbon electrode. This model of a biological membrane was used to investigate the oxidation of dihydronicotinamide adenine dinucleotide (NADH) by dopamine. After this electrode had been immersed in dopamine solution for 10 h, it was found that some dopamine had been incorporated in the film. The cyclic voltammogram was obtained for the oxidation of 2.0 X 10(-3) mol 1(-1) NADH with dopamine incorporated in the films. All electrochemical experiments were performed in 0.005 mol 1(-1) phosphate buffer (pH 7.0) containing 0.1 mol 1(-1) NaCl without oxygen. The oxidation current increased gradually with successive sweeps and reached steady state. It was a different phenomenon from previous results. The anodic overpotential was reduced by about 130 mV compared with that obtained at a bare glassy carbon electrode. The diffusion coefficient for 2.0 X 10(-3) mol 1(-1) NADH was 6.7 X 10(-6) cm(2) s(-1). (C) 1999 Elsevier Science S.A. All rights reserved.
Resumo:
Non-stoichiometric mixed-valent molybdenum(VI, V) oxide film was grown on carbon substrates by the electrodeposition method. Responses of the prepared molybdenum oxide thin films to potential and to different solution acidities were studied by cyclic voltammetry, and the corresponding morphological changes of the film were monitored by atomic force microscopy (AFM). AFM images of the molybdenum oxide film show that the characteristic domed structure on the film surface increased during the transition from the oxidized state to the reduced state without signification change in the KMS surface roughness value. Furthermore, AFM studies show that the solution acidity has great effect on the morphology of the films, and the films undergo a homogenizing process with increasing pH of the solutions. (C) 1999 Elsevier Science S.A. All rights reserved.
Resumo:
A series of liquid crystalline copolyethers has been synthesized from 1-(4-hydroxy-4'-biphenyl)-2-(4-hydroxyphenyl)propane and different alpha,omega-dibromoalkanes [coTPP(n/m)]. In this report, coTPPs having n = 5, 7, 9, 11 and m = 12 are studied, which represent copolyethers having both varying odd number and a fixed even number of methylene units. The compositions were fixed at an equal molar ratio (50/50). These coTPPs(nlm) show multiple phase transitions during cooling and heating in differential scanning calorimetry experiments. The undercooling dependence of these transitions is found to be small, indicating that these transitions are close to equilibrium, Although the coTPPs possess a high-temperature nematic (N) phase, the periodicity order along the chain direction is increasingly disturbed when the length of the odd-numbered methylene units decreases from n 11 to 5. in the coTPPs(5/12, 7/12, and 9/12), wide-angle X-ray diffraction experiments at different temperatures show that, shortly after the N phase formation during cooling, the lateral molecular packing improves toward a hexagonal lattice, as evidenced by a gradual narrowing of the scattering halo. This process represents the possible existence of an exotic N phase, which serves as a precursor to the columnar (Phi(H)) phase. A further decrease in temperature leads to a (PH phase having a long-range ordered, two-dimensional hexagonal lattice. In coTPP(11/12), the phase structures are categorized as highly ordered and tilted, smectic and smectic crystal phases, similar to homoTPPs, such as the smectic F (S-F) and smectic crystal G (SCG) phases. An interesting observation is found for coTPP(9/12), wherein a structural change from the high-temperature Phi(H) phase to the low-temperature S-F phase occurs. It can be proven that, upon heating, the well-defined layer structure disappears and the lateral packing remains hexagonal. The overall structural differences in this series of coTPPs between those of the columnar and highly ordered smectic phases are related to the disorders introduced into the layer structure by the dissimilarity of the methylene unit lengths in the comonomers.
Resumo:
Valence stability and change of Eu(II) in oxides have been studied by luminescence spect a. The results show that the valence stability and change of Eu(II)in oxides is closely related to the radius and electric charge of positive ions substituted by Eu(II) and crystal structure of the host such as Al2O3 which can form alpha-Al2O3 single phase and alpha-Al2O3 and gamma-Al2O3 mixed phases under different reaction temperatures. A, fairly good explanation is made by the proposed relation between energy coefficient and crystal structure for the first time to the observed experiment results. if the energy coefficients of substitution ions is more than that of Eu(II), the lattice substitution of Eu(II)for these ions is not occured generally and valence stare of Eu(II)is not stable and be easily changed into Eu(III). The lattice of gamma-Al2O3 can stablize the valence state of Eu(II)within certain coped concentration and in alpha-Al2O3 crystal lattice Eu(II)can be easily changed into Eu(III).
Resumo:
The change of Eu3+-surroundings with the Al/B ratio varying from 4.5 to 2 and Eu/(Al + B) = 0.02, was investigated through X-ray diffraction, infrared spectra, excitation and emission spectra, and phonon sideband. The results show coexistence of the crystal phase Al18B4O33 and the amorphous phase and Eu3+ ions of the samples with the Al/B ratio from 3 to 2 are incorporated into the amorphous phase. It was also found that electron-phonon coupling strength decreases with the Al/B ratio from 3 to 2, non-radiative decay rate decreases, resulting in an increase of the Eu3+-emission intensity. (C) 1999 Elsevier Science Ltd. All rights reserved.
Resumo:
In this paper, phase transition temperatures of side chain liquid crystal polymer were predicted by molecular dynamics simulation. We analyzed the change of energy and the degree of similarity(S) with the temperature varying. The simulated phase transition temperatures agree with the experimental values in a proper deviation.
Resumo:
Mossbauer spectra of Fe-57 in a thick film YBa2(Cu0.97Fe0.03)(3)O7-x irradiated by a large dose of gamma-rays from Co-60 have been measured. The variation of the relative intensities of some subspectra of Fe-57 in the. Mossbauer spectra of the thick film YBa2(Cu0.97Fe0.03)(3)O7-x after irradiation can be observed. This variation indicates that the change of the coordination environment around some Fe atoms in the lattice occurs due to irradiation. The relative intensity of subspectrum D1(Fe) at the Cu(1) site decreases and that of subspectrum D4(Fe) at the Cu(1) site increases. This may be because of the possible oxygen atom hopping between the coordination environments of D1(Fe) and D4(Fe) in the lattice caused by irradiation. The effect of irradiation on the coordination environment around the Fe atom at the Cu(2) site is not appreciable. (C) 1997 Elsevier Science B.V.
Resumo:
Long-range ordered stripes domain structures were observed in Dipalmitoylphosphatidylcholine (DPPC) Langmuir-Blodgett monolayer film which was spread on the subphase of lanthanide ion (Eu3+) solution and transferred to a freshly cleaved mica substrate by vertical deposition. This novel phenomenon was discussed in terms of the competitive interaction of dipole-dipole and electrostatic interactions of the DPPC molecules combined with lanthanide ions with those DPPC molecules free of lanthanide ions.
Resumo:
The solid-solid phase transition of [n-C11H23NH3]2ZnCl4 Complex have been studied by Raman spectroscopy. The results show that the occurence of the structural phase transitions mainly related to the change of packing structure and molecular conformation o
Resumo:
Amperometic flow measurements were made at +0.55 V (vs. Ag/AgCl) in 0.1 mol l-1 KOH electrolyte with an Ni(II) chemically modified electrode (CME) with an Eastman-AQ polymer film. The use and characteristics of a Ni(II)-containing crystalline and polymer-modified electrode obtained by a double coating step as a detector for amino acids in a flow-injection system using reversed-phase liquid chromatography are described. The detection of these analytes is based on the higher oxidation state of nickel (NiOOH) controlled by the applied potential. The electroanalytical parameters and the detection current for a series of amines and amino acids were investigated. The use of such a CME in the flow-injection technique was found to be suitable in a solution at low pH. The linear range for glycine is 5 X 10(-6)-0.1 mol 1-1 with a detection limit of 1.0 X 10(-6) mol l-1. A 1 X 10(-4) mol 1-1 mixture of serine and tyrosine was also detected after separation on an Nucleosil C18 column.
Resumo:
A glassy carbon electrode coated with an electrodeposited film of mixed-valent cobalt oxide/cyanocobaltate (Co-O/CN-Co) enabled hydrazine compounds to be catalytically oxidized at the greatly reduced overpotential and in a wide operational pH range (pH 2.0-7.0). Electrocatalytic activity at the Co-O/CN-Co modified electrode was evaluated with respect to solution pH, film thickness, supporting electrolyte ions, potential scan rate, operating potential, concentration dependence and other variables. The Co-O/CN-Co film electrode was completely compatible with a conventional reversed-phase liquid chromatographic (RP-LC) system. Practical RP-LC amperometric detection (RP-LCEC) of hydrazines was performed. A dynamic linear response range over three orders of magnitude and a detection limit at the pmol level were readily obtained. The Co-O/CN-CO film electrode exhibited excellent electrocatalytic stability in the flowing streams.
Resumo:
The isopolymolybdic anion-polyaniline film modified carbon fiber (CF) microelectrode with high stability and electroactivity in aqueous acid solution has been successfully prepared by cycling the potential between -0.15 V and +0.85 V vs. sce at 100 mV s-1 or applying constant potential (+0.85 V) for electropolymerization in a 0.5 M H2SO4 solution containing 5.0 x 10(-2) M aniline and 5.0 x 10(-3) M H4Mo8O26. The electrochemical behaviour of the isopolymolybdic anion entrapped in the polyaniline film is strongly influenced by the sweep-potential range besides the acidity of electrolyte solution. In some acidic electrolyte solution (eg 0.5 M H2SO4), the change of the sweep-potential range causes the structure alternation of the isopolymolybdic anion and resulting in a new electrode process. The cyclic voltammogram of Mo8O264- in 0.5 M H2SO4 solution exhibits three two-electron reversible waves between +0.70 and -0.20 V. However, when the potential sweeps to the lower-limit of -0.3 V, where the fourth four-electron cathodic wave appears, the redoxidation process of the reduction product of Mo8O264- becomes relatively complicated. The 10-electron reduction product seems to change into other isopolyanion (this unknown structure isopolyanions are simply called [Mo-O]), which can be reoxidized to Mo8O264- by five successive two-electron oxidation steps from -0.30 to +0.70 V. However, when the lower-limit of the cycling potential is maintained at -0.30 V and the upper-limit reduces to +0.40 V from +0.70 V, the [Mo-O] in the film exhibits four two-electron reversible waves. We have presented a novel explanation about its electrode reaction mechanism on the basis of our experimental results.