309 resultados para LS-DYNA
Resumo:
Two commercial biaxially oriented polypropylene (BOPP) resins, resin A and resin B, having different processing properties, were fractionated by preparative temperature-rising elution fractionation (TREF). The TREF fractions were further characterized by gel permeation chromatography (GPC), gel permeation chromatography coupled with light scattering (GPC-LS), wide-angle X-ray diffraction (WAXD), and differential scanning calorimetry (DSC). GPC-LS did not find visible long-chain branching in either resin A or B. The results from TREF and DSC indicate that the fractional melting parameter f(T) may be used to predict the profile of the TREF cumulative weight distribution curve. GPC results show that the molecular weights of the fractions tend to increase with elution temperature. WAXD and DSC data show that the crystallinity of fractions does not increase monotonically with increase of elution temperature. There appears to be a maximum in the plot of crystallinity versus elution temperature. The high-speed BOPP resin A has a lower isotacticity but a homogeneous isotacticity distribution and a higher molecular weight but a broader molecular weight distribution than resin B.
Resumo:
Poly (6-caprolactone) (PCL) and poly (L-lactide) (PLA) were prepared by ring-opening Polymerization catalyzed by organic amino calcium catalysts (Ca/PO and Ca/EO) which were prepared by reacting calcium ammoniate Ca(NH3)(6) with propylene oxide and ethylene oxide, respectively. The catalysts exhibited high activity and the ring-opening polymerization behaved a quasi-living characteristic. Based on the Fr-IR spectra and the calcium contents of the catalysts, and based on the H-1 NMR end-group analysis of the low molecular weight PCL prepared using catalysts Ca/PO and Ca/EO, it was proposed that the catalysts have the structure of NH2-Ca-O-CH(CH3)(2) and NH2-CaO-CH2CH3 for Ca/PO and Ca/EO, respectively. The ring-opening polymerization of CL and LA follows a coordination-insertion mechanism and the active site is the Ca-O bond.
Resumo:
For the 4f(N-1)5d configuration the Coulomb interaction between f and d electrons was parameterized by F-k(fd) with K = 2, 4, and G(K)(fd) with K = 1, 3, 5. The spin-orbit interaction for 4f and 5d electrons can be parameterized by xi (f) and xi (d) respectively, which can be compounded into one lambda : lambda = axi (f) + bxi (d), where a and b are the corresponding coefficients. The energy expressions of H-e(fd) of the chief low-energy levels of 4f(N-) (1)5d configuration for heavy lanthanide ions were calculated and the corresponding spin-orbit parameters lambda were also given in LS coupling, which are profitable in analyzing the spectra of the heavy lanthanide ions.
Resumo:
Luminescent hybrid thin films consisting of terbium complex covalently bonded to a silica-based network have been obtained in situ via a sol-gel approach. A new monomer, N-(4-benzoic acid-yl), N'-(propylthiethoxysilyl)urea (PABI), has been synthesized by grafting isocyanatopropyltriethoxysilane (ICPTES) to p-aminobenzoic acid and characterized by H-1 NMR IR and MS, The monomer acts as a ligand for Tb3+ ion and as a sol-gel precursor. Band emission front Tb3+ ion due to an efficient ligand-to-metal energy transfer was observed by UV excitation. The decay curves of Tb3+ in the hybrid films were measured. The energy difference between the triplet state energy of PABI and the D-5(4) level of Tb3+ ion falls in the exciting range to sensitize Tb3+ ion fluorescence.
Resumo:
Hybrid materials, containing in-situ synthesized lanthanide complexes with intense green light, have been prepared via sol-gel process. The luminescence properties and the decay times of as-synthesized samples were investigated. The excitation spectrum of the samples indicates the formation of complexes between terbium (III) and P-Sulfosalicylic acid. The hybrid materials that contain in-situ synthesized terbium complexes exhibit the characteristic emission bands of the rare earth ions. In addition, the effect of concentration of terbium on the luminescence properties as well as the thermal stability were also studied.
Resumo:
Novel soluble rare earth aromatic carboxylates were prepared. The triplet energy level of organic ligand was measured. The photoluminescence properties of the Tb3+ and EU3+ aromatic carboxylates and lifetimes were investigated, which indicated that these rare earth complexes have high quantum efficiency. Because of their excellent solubility, polymer-doping rare earth carboxylates were fabricated as thin Films by spin-coating method and their luminescence properties were studied. Some rare earth organic light-emitting diodes were successfully fabricated which performed high pure color. The maximum luminance of the device of ITO/PVK/PVK :Th (AS)(3)Phen: PBD/PBD/Al is 32 cd(.)m(-2) at 28 V.
Resumo:
The rare earth (Eu3+, Dy3+)-polyoxometalate thin films were fabricated on quartz plate by the sol-gel method. The thin films were demonstrated by the luminescence spectra. The thin films exhibit the characteristic emission bands of the rare-earth ions. It is noticed that the yellow to blue intensity ratio (Y:B) of Dy3+ and the red to orange ratio (R:O) of Eu3+ in the films are different from that of the corresponding solids. Furthermore, the thin films present shorter fluorescence lifetime than the pure complexes. The reasons that were responsible for these results were also discussed.
Resumo:
New monomer N-(4-carboxyphenyl)-NL-(propyltriethoxysilyl)urea (1) which acts as both a ligand for Th3+ ion and a sol-gel precursor has been synthesized and characterized by H-1 NMR, and MS. Hybrid luminescent thin films consisting of organoterbium covalently bonded to a silica-based network have been obtained in situ via a sol-gel approach. Strong line emission of Tb3+ ion was observed from the hybrid luminescent films under UV excitation.
Resumo:
The crystal structure of Sm(HTH)(3)Phen [HTH: 4,4,5,5,6,6,6-heptafluoro-1-(2-thienyl)-1,3-hexanedione, Phen: 1,10-Phenanthroline] has been determined by single crystal X-ray diffraction and the coordination geometry of Sm atom is a dodecahedron. The complex can give the characteristic luminescence of Sm3+ upon UV excitation.
Resumo:
Novel hybrid thin films covalently doped with Eu3+ (Tb3+) have been prepared via direct routes involving co-condensation of tetraethoxysilane and phen-Si in the presence of Eu3+ (Tb3+) by spin-casting and their luminescence properties have been investigated in detail. Lanthanide ions can be sensitized by anchored phenanthroline in hybrid thin films. Excitation at the ligand absorption wavelength (272 nm) resulted in the strong emission of the lanthanide ions i.e. Eu3+ D-5(0)-F-7(J) (J=0, 1, 2, 3, 4) emission lines and Tb3+ D-5(4)-F-7(J) (J = 6, 5, 4, 3) due to the energy transfer from the ligands to the lanthanide ions.
Resumo:
Luminescent thin films of heteropolytungstate complexes containing lanthanide (europium or samarium) were successfully fabricated by the Langmuir-Blodgett (LB) technique. The pressure-area isotherm of the monolayer of dimethyldioctadecylammonium. bromide (DODA) is modified rather markedly when the subphase contains the complex of Na9EuW10O36 or Na9SmW10O36. The above results indicate that the monolayer of DODA has a strong interaction with the polyanions of EuW10O369-. (or SmW10O369-). X-ray photoelectron spectra and fluorescent spectra verify that europium and tungsten atoms are 36 36 incorporated into the LB films. Ultraviolet (UV), fluorescent spectra and low-angle X-ray diffraction experiments demonstrate that these LB films have a well-defined lamellar structure. The LB film containing EuW10O369- can give off strong fluorescence 16 on UV irradiation. The characteristic emission behaviors of europium ions in LB films and in the powder of Na9EuW10O369- are discussed. It is found that the intensity ratio of the D-5(0)-F-7(2) transition to the D-5(0)-->F-7(1) transition in LB film is quite different from that in the powder of Na9EuW10O36. The difference of the ratio indicates that the site symmetry of europiurn is distorted in LB film, which is probably due to the strong electrostatic interactions between DODA and polyanions.
Resumo:
The effect of nucleating agents on the crystallization behavior of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) was studied. A differential scanning calorimeter was used to monitor the energy of the crystallization process from the melt and melting behavior. During the crystallization process from the melt, nucleating agent led to an increase in crystallization temperature (T-c) of PHBV compared with that for plain PHBV (without nucleating agent). The melting temperature of PHBV changed little with addition of nucleating agent. However, the areas of two melting peaks changed considerably with added nucleating agent. During isothermal crystallization, dependence of the relative degree of crystallization on time was described by the Avrami equation. The addition of nucleating agent caused an increase in the overall crystallization rate of PHBV, but did not influence the mechanism of nucleation and growth of the PHB crystals. The equilibrium melting temperature of PHBV was determined as 187degreesC. Analysis of kinetic data according to nucleation theories showed that the increase in crystallization rate of PHBV in the composite is due to the decrease in surface energy of the extremity surface.
Resumo:
Organo-functionalized MCM-41 containing non-covalently linked 1,10-phenanthroline (denoted as Phen-MCM-41) was synthesized by template-directed co-condensation of tetraethoxysilane and the modified phenanthroline (denoted as Phen-Si). XRD, FTIR, UV/VIS spectroscopy as well as luminescence spectroscopy were employed to characterize Phen-MCM-41. No disintegration or loss of the Phen-Si during the solvent extraction procedure could be observed. When monitored by the ligand absorption wavelength (272 nm), the undoped MCM-41 produces a broad band emission centered at 450 run, whereas europium (III) doped Phen-MCM-41 displays the emission of the Eu3+, i.e., D-5(0) --> F-7(J) (J = 0, 1, 2, 3, 4) transition lines due to the energy transfer from the ligands to Eu3+ as well as a broad band emission centered at 442 nm.
Resumo:
A new kind of luminescent organic-inorganic hybrid material (denoted Hybrid I) consisting of europium 1,10-phenanthroline complexes covalently attached to a silica-based network was prepared by a sol-gel process. 1,10-Phenanthroline grafted to 3-(triethoxysilyl)propyl isocyanate was used as one of the precursors for the preparation of an organic-inorganic hybrid materials. For comparison purposes, the hybrid material (denoted Hybrid II) in which phenanthroline was not grafted onto the silica backbone of the frameworks was also prepared. Elemental analysis; NMR, FT-IR, UV/vis absorption, and luminescence spectroscopies, and luminescence decay analysis were used to characterize the obtained hybrid materials. It is shown that the homogeneity of Hybrid I is superior to that of Hybrid II, and a higher concentration europium can be incorporated into Hybrid I than Hybrid II. Excitation at the ligand absorption wavelength (283 nm) resulted in the strong emission of the Eu3+ D-5(0)-F-7(J) (J = 0-4) transition lines as a result of the efficient energy transfer from the ligands to the EU3+ in Hybrid I. The number of water molecules coordinated to the europium ion was estimated, and the structure of the as-synthesized Hybrid I was predicted on the basis of the experimental results.