255 resultados para K-polynomial
Resumo:
The rational synthesis and the structural and magnetic characterization of a nickel cluster are presented. The compound comprises a rhomblike Ni4O16 group encapsulated between two-heptadentate tungstoarsenate ligands [AsW9O34](9-). The crystal structure of K-10[Ni-4(H2O)(2)(AsW9O34)(2)](.)4H(2)O was solved in monoclinic, P2(1)/n symmetry, with a = 12.258(3) Angstrom, b = 21.232(4) Angstrom, c = 15.837(3) Angstrom, beta = 92.05(3)degrees, V = 4119.1(14) Angstrom(3), Z = 2, and R = 0.0862. The crystal structure of the Ni(II) derivative was compared with that of the Cu(II), Zn(II), Co(II) and Mn(II) derivatives. The Ni4O14(H2O)(2) unit in the compound shows no Jahn-Teller distortion. On the other hand, the Ni(II) derivative shows ferromagnetic exchange interactions within the Ni4O16 group (J = 7.8 cm(-1), J' = 13.7 cm(-1)) and an S = 4 ground state, the highest spin state reported in a heteropoly complex. Its redox electrochemistry has been studied in acid buffer solutions using cyclic voltammetry. It exhibited two steps of one-electron redox waves attributed to redox processes of the tungsten-oxo framework. The new catalyst showed an electrocatalytic effect on the reduction of NO2-.
Resumo:
The complex fluorides of AZnF(3) (A = Na, K), which are isostructural with perovskite phases were obtained by the method of hydrothermal synthesis at 160-220 degrees C. Compared with traditional high-temperature solid-state method, the products were pure and contained lower amount of oxygen.
Resumo:
Single crystals of K(2)Ln(NO3)(5). 2H(2)O (KLnN) (Ln = La, Ce, Pr, Nd, Sm) were grown from aqueous solution. The thermogravimetric analysis and differential thermal analysis curves of KLnN demonstrate that the processes of dehydration, melting, irreversible phase transformation and decomposition of NO3- take place in sequence in the heating processes (except KCN). There are three stages in the decomposition of NO3- in KLnN (Ln = La, Nd, Sm) while two in KLnN (Ln = Ce, Pr). K(2)Ln(NO3)(5) is formed at about 225 degrees C by the reaction of KNO3 and Ln(NO3)(3). nH(2)O (Ln = La, Ce, Pr, Nd). (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
K(4)Ln(2)(CO3)(3)F-4 (Ln=Pr, Nd, Sm, Eu, Gd) is a special type of frequency doubling compound, whose crystal structure exhibits a scarcity of fluorine ions. This leads to two different coordination polyhedrons in the general position of K(2) atoms: [K(2)O6F(1)(2)F(2)] and [K(21)O6F(1)(2)] in a 2/1 ratio. The chemical bonding structures of all constituent atoms of the compound K4Gd2(CO3)(3)F-4 (KGCOF) are comprehensively studied; moreover, the relationship between the chemical bonding structure and the nonlinear optical (NLO) properties is investigated from the chemical bond viewpoint. The theoretical prediction of the NLO tensor coefficient d(11) of KGCOF is in agreement with experimental observation. Theoretical analyses show that the nonlinearity of this crystal type mainly originates from K-O bonds. In addition, the correlation between the NLO tensor d(11) and the refractive index n(0) of KGCOF is discussed. (C) 2000 American Institute of Physics. [S0021-8979(00)07506-X].
Resumo:
通过高温固相反应法,在高纯N_2气氛中合成了BaLiF_3,KMgF_3中单掺和双掺Eu,Gd的ABF_3型复合氟化物。研究了各类掺杂体系的光谱特性,观察到了Gd~(3+)→Eu~(2+)的能量传递,分析了能量传递过程,探讨了能量传递机理,并讨论了Gd~(3+)和Eu~(2+)的取代格位。
Resumo:
The sample solution of KNO3 is ejected into the gas phase and the ionic dusters of K+(KNO3)(n) and NO3-(KNO3)(m) we formed and observed by electrospray ionization mass spectrometry (ESIMS). The full mass spectra of both the positive ion and the negative ion show that the differences between each peak nearby are all about 101(m/z), which correspond to the molecular weight of KNO3. The general formula of the ionic clusters can be assigned as K+ (KNO3)(n) and NO3--(KNO3)(m).
Resumo:
New typical ionic clusters with complex anions could be formed directly from the KNO3 aqueous solution by means of the electrospray ionization mass spectrometry(ESIMS). The difference between the neighboring peaks(m/z), which corresponded to the molecule weight of KNO3 being 101 in the full mass spectrometry of the positive-ion and the negative-ion. The general formula of the ionic clusters belonged to K+(KNO3)(n) and NO3- (KNO3)(m).
Resumo:
The novel amino-acid-containing polyoxometalate Ka(6) [Cu(Ala)(2) (H2O)(2)](2) [Cu-4 (H2O)(2) . (AsW9O34)(2)] . 16H(2)O was synthesized from the reaction of K-10[Cu-4(H2O)(2)(AsW9O34)(2)] . 20H(2)O with beta -alanine, Its structure has been determined by single crystal X-ray diffraction. It crystallizes in the triclinic space group P (1) over bar, with a=1. 196 3(2) nm, b=1. 536 5(3) nm, c=1. 591 4(3) nm, alpha =93. 97(3)degrees, beta= 110. 88(3)degrees, gamma =101. 07(3)degrees, V=2. 651 8(9) nm(3) and Z=1. Least-squares refinement of the structure leads to R and R-w factors of 0. 067 3 and 0. 162 8, respectively. An unusual structural feature of the compound is that the polyanion [Cu-4(H2O)(2) (AsW9O34)](10-) is linked with the amino-acid complex of Cu2+ by a mu -oxygen atom.
Resumo:
In the title compound, catena-poly[dipotassium [[(oxalato-O,O')dioxomolybdate]-mu-oxo]monohydrate], oxalate acts as a bidentate ligand coordinating to each Mo atom through the two deprotonated carboxylate groups. The coordination polyhedron of molybdenum is distorted octahedral and there are infinite chains in the structure. Principal dimensions are: Mo-O(terminal) 1.560 (3) and 1.739 (3) Angstrom, Mo-O(bridging) 2.046 (4) and 2.410 (4) Angstrom, and Mo-O(carboxylate) 1.949 (3) and 2.113 (3) Angstrom.
Resumo:
Cyclic voltammetry of Vitamin K-3 (V-K3) was measured with Pt disk electrode, platinum interdigitated array (Pt-IDA) and Au-IDA microelectrodes in single and dual modes. The effects of pH, scan rate and collector potential on the current of generator and collector were studied. The collection efficiency of V-K3 at IDA electrodes was measured. The linear ranges for current response as a function of V-K3 concentration were found to he 10 mu M-1 mM (i(g)) and 1 mu M - 1 mM (i(c)) for the generator and collector of the Pt-IDA electrode, respectively. The effects of waiting time, potential difference and pulse electrolysis time in differential pulse voltammetry (DPV) on the peak current of V-K3 were studied to get the optimal condition at 0.1 M Na2HPO4, pH 11.50 and 11.0 for Au-IDA and Pt-IDA, respectively.