218 resultados para Copper alloys.
Resumo:
The Mg-based metal matrix composite reinforced by 10 wt.% W14Al86 alloy particles has been prepared by mechanical alloying and press-forming process. X-ray diffraction studies confirm the formation of the composite. Microstructure characterization of the samples reveals the uniform distribution of fine W14Al86 alloy. Mechanical properties characterization revealed that the reinforcement of W14Al86 alloy lead to a significant increase in hardness and tensile strength of Mg and AZ91.
Resumo:
The first example of one-dimensional organic-inorganic polymetallic coordination polymer based on heptamolybdate anions, formulated (NH4)[Cu(en)(2)][Na(en)Cu(en)(2)(H2O)(Mo7O24)].4H(2)O (en = ethylenediamine) (1) has been hydrothermally synthesized and characterized by element analysis, IR, EPR, CV and single crystal X-ray diffraction. The structure of 1 is fabricated by self-assembly of integrated heptamolybdic anions without collapse of primary structure and copper-ethylenediamine(en) coordination groups into one-dimensional zigzag-shaped chains.
Resumo:
A simultaneous reduction SO42- to S2- by 2,5-pyridinedicarboxylate under hydrothermal conditions produced a new binuclear copper(II) coordination polymer [CuS(4,4'-bipy)](n) (4,4-bipy = 4,4'-bipyridine) (1). Single crystal X-ray analysis revealed that compound I consisted of sulfur-bridged binuclear copper(II) units with Cu-Cu bonding which were combined with 4,4-bipy to generate a three-dimensional network constructed from mutual interpenetration of two-dimensional (6,3) nets. Crystal data for 1:C10H8CuN2S, tetragonal 14(1)/acd, a = 14.0686(5) Angstrom, b = 14.0686(5) Angstrom, c = 38.759(2) Angstrom, Z = 32. Other characterizations by elemental analysis, IR, EPR and TGA analysis were also described in this paper.
Resumo:
The effects of positive and negative gate-bias stress on organic field-effect transistors (OFET) based on tantalum (Ta)/tantalum pentoxide (Ta2O5)/fluorinated copper phthalocyanine (F16CuPc) structure are investigated as a function of stress time and stress temperature. It is shown that gate-bias stress induces a parallel threshold voltage shift (DeltaV(T)) of OFETs without changes of field-effect mobility mu(EF) and sub-threshold slope (DeltaS). The DeltaV(T) is observed to be logarithmically dependent on time at high gate-bias appropriate to OFET operation. More importantly, the shift is directional, namely, be large shift under positive stress and almost do not move under negative stress. The threshold voltage shift is temperature dependent with activation energy of 0.51 eV We concluded that threshold voltage shift of the OFET with F16CuPc as active layer is due to charge trapping in the insulator in which trapped carriers have redistribution.
Resumo:
Two typical and important copper-containing enzymes, laccase (Lac) and tyrosinase (Tyr), have been immobilized on the surface of active carbon with simple adsorption method. The cyclic voltammetric results indicated that the active carbon could promote the direct electron transfer of both Lac and Tyr and a pair of well-defined and nearly symmetric redox peaks appeared on the cyclic voltammograms of Lac or Tyr with the formal potential, E-0', independent on the scan rate. The further experimental results showed that the immobilized copper-containing oxidase displayed an excellent electrocatalytic activity to the electrochemical reduction of O-2. The immobilization method presented here has several advantages, such as simplicity, easy to operation and keeping good activity of enzyme etc., and could be further used to study the direct electrochemistry of other redox proteins and enzymes and fabricate the catalysts for biofuel cell.
Resumo:
The effect of La/Ce ratio on the structure and electrochemical characteristics of the La0.7-xCexMg0.3Ni2.8Co0.5 (x = 0.1, 0.2, 0.3, 0.4, 0.5) alloys has been studied systematically. The result of the Rietveld analyses shows that, except for small amount of impurity phases including LaNi and LaNi2, all these alloys mainly consist of two phases: the La(La, Mg)(2)Ni-9 phase with the rhombohedral PuNi3-type structure and the LaNi5 phase with the hexagonal CaCU5-type structure. The abundance of the La(La, Mg)(2)Ni-9 phase decreases with increasing cerium content whereas the LaNi5 phase increases with increasing Ce content, moreover, both the a and cell volumes of the two phases decrease with the increase of Ce content. The maximum discharge capacity decreases from 367.5 mAh g(-1) (x = 0.1) to 68.3 mAh g(-1) (x = 0.5) but the cycling life gradually improve. As the discharge current density is 1200 mA g(-1), the HRD increases from 55.4% (x = 0.1) to 67.5% (x = 0.3) and then decreases to 52.1% (x = 0.5). The cell volume reduction with increasing x is detrimental to hydrogen diffusion D and accordingly decreases the low temperature dischargeability of the La0.7-xCexMg0.3Ni2.8Co0.5 (x = 0.1-0.5) alloy electrodes.
Resumo:
Electronic structures of the heterojunction between copper phthalocyanine (CuPc) and copper hexadecafluorophthalocyanine (F16CuPc) were studied with ultraviolet photoemission spectroscopy. Band bending and an interface dipole were observed at the interface due to the formation of an electron accumulation layer and a depletion layer in F16CuPc and CuPc, respectively. Such an energy level alignment leads to interesting ambipolar characteristics for application of the CuPc/F16CuPc junction in organic field-effect transistors.
Resumo:
We demonstrate the production of copper phthalocyanine (CuPc) based p-type hybrid permeable-base transistors, which operate at low voltages having high common-base current gains. These transistors are prepared by evaporating a thin metal layer (Ag or Al) that acts as base on top of a Si substrate that acts as collector. In the sequence CuPc and Au are thermally sublimated to produce the emitter, constituting a quite simple device production procedure with the additional advantage of allowing higher integration due to its vertical architecture.
Resumo:
The structure and stability of magnesia-supported copper salts of molybdovanadophosphoric acid (Cu2PMo11VO40) were characterized by different techniques. The catalyst was prepared in ethanol by impregnation because this solvent does not hurt texture of the water-sensitive MgO and Cu2PMo11VO40. The Keggin-type structure compound may be degraded partially to form oligomerized polyoxometalate when supported on MgO. However, the oligomers can rebuild as the Keggin structure again after thermal treatment in air or during the reaction. Meanwhile, the V atoms migrate out of the Keggin structure to form a lacunary structure, as observed by Fourier transform IR spectroscopy. Moreover, the presence of Cu2+ as a countercation showed an affirmative influence on the migration of V atoms, and the active sites derived from the lacunary species generated after release of V from the Keggin anion. The electron paramagnetic resonance data imply that V5+ autoreduces to V4+ in the fresh catalyst, and during the catalytic reaction a large number of V4+ ions are produced, which enhance the formation of O2- vacancies around the metal atoms. These oxygen vacancies may also improve the reoxidation function of the catalyst. This behavior is correlated to higher catalytic properties of this catalyst. The oxidative dehydrogenation of hexanol to hexanal was studied over this catalyst.
Resumo:
The crystal structure, hydrogen storage property and electrochemical characteristics of the La0.7Mg0.3Ni3.5-x(Al0.5Mo0.5), (x=0-0.8) alloys have been investigated systematically. It can be found that with X-ray powder diffraction and Rietveld analysis the alloys are of multiphase alloy and consisted of impurity LaNi phase and two main crystallographic phases, namely the La(La, Mg)(2)Ni-9 phase and the LaNi5 phase, and the lattice parameter and the cell volume of both the La(La, Mg)(2)Ni-9 phase and the LaNi5 phase increases with increasing A] and Mo content in the alloys. The P-C isotherms curves indicate that the hydrogen storage capacity of the alloy first increases and then decreases with increasing x, and the equilibrium pressure decreases with increasing x. The electrochemical measurements show that the maximum discharge capacity first increases from 354.2 (v = 0) to 397.6 mAh g(-1) (x = 0.6) and then decreases to 370.4 mAh g(-1) (x= 0.8). The high-rate dischargeability of the alloy electrode increases lineally from 55.7% (x=0) to 73.8% (x=0.8) at the discharge current density of 1200 mA g(-1). Moreover, the exchange current density of the alloy electrodes also increases monotonously with increasing x.
Resumo:
4-Aminobenzoic acid (4-ABA) was covalently grafted on a glassy carbon electrode (GCE) by amine cation radical formation during the electrooxidation process in 0.1 M KCl aqueous Solution. X-ray photoelectron spectroscopy (XPS) measurement proves the presence of 4-carboxylphenylamine on the GCE. Electron transfer processes of Fe(CN)(6)(3-) in solutions of various pHs at the modified electrode are studied by both cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Changing the solution pH would result in the variation of the terminal group's charge state, based on which the surface pK(a) values were estimated. The copper hexacyanoferrate (CuHCF) multilayer films were formed on 4-ABA/GCE prepared in aqueous solution, and which exhibit good electrochemical behavior with high stability.
Resumo:
NO decomposition reaction was investigated over La2-xThxCuO4, in which the valence of copper was controlled by Th substitution and was characterized by XPS measurement. A close correlation between the valence of copper and the activity was observed. The activity increased with the decrease of the average oxidation number of copper, and increased with the increase of Cu+ content, suggesting that the transition metal with low valence (Cu+) is active for the reaction in the present cases.
Resumo:
AB(2-x)%LaNi5 (x =0, 1, 5, 10) composite alloys were prepared by melting Zr0.9Ti0.1Ni1.1Mn0.6V0.3 with a small amount of LaNi5 alloy as addition. The microstructure and electrochemical characteristics of the composite alloys were investigated by means of XRD, SEM, EDS and electrochemical measurements. It was shown that LaNi5 addition does not change the basic hexagonal C14 Laves phase of AB(2) alloys, but some second phases have segregated. It was found that the addition of LaNi5 greatly improves the activation property, high-rate dischargeability (HRD) and charge-discharge cycling stability of AB(2) Laves phase alloy. At current density of 1200 mA/g, HRD of the alloy increases from 38.92% (x =0) to 60.09% (x = 10). The capacity retention of the alloy after 200 charge-discharge cycles increases from 57. 10% (x = 0) to 83.86% (x = 5) and 67.31% (x = 10). The improvement of the electrochemical characteristics caused by LaNi5 addition seems to be related to formation of the second phases.
Resumo:
The device performances of copper phthalocyanine (CuPc)-based organic thin-film transistors (OTFTs) in main components of air were studied. We found that the device stored in O-2 humidified by water exhibited the changes of electric characteristics including positive-shifted threshold voltage and lower I-on/I-off but unchanged mobility, which was similar to the device exposed to room air. These changes are attributed to O-2 doping to copper phthalocyanine thin film assisted by water. Furthermore, a cross-linked polyvinyl alcohol film was used as encapsulation layer to prevent the permeation of O-2 and water, which resulted in excellent stability even when devices were placed in air for over a year. Therefore, current studies will push the development of OTFTs for practical applications.
Resumo:
Mg-8Gd-0.6Zr-xNd-yY (mass%) alloys which containing different Nd:Y mass ratio of 3:0, 2:1, 1:2 and 0:3 with a constant x + y = 3 were prepared by metal mould casting method, and the microstructure, aging behaviour and tensile properties have been investigated. The fibrous eutectic areas along the boundaries enlarge clearly in the as-cast alloys containing Y element, and the fine grain boundaries and dispersed precipitation are observed in the aged alloys. The Mg-8Gd-0.6Zr-2Nd-Y alloy exhibits notably age-hardening behaviour and the highest mechanical property. The ultimate tensile strength and yield strength of Mg-8Gd-0.6Zr-2Nd-Y alloy in the peak aged hardness are 293 and 221 MPa at room temperature, 248 and 191 MPa at 230 degrees C. The improvement of age-hardening response and tensile properties is mainly attributed to the quadrate-like stable Mg5RE precipitate, which forms readily and orderly in aged Mg-8Gd-0.6Zr-2Nd-Y alloy.