230 resultados para 3-D space


Relevância:

80.00% 80.00%

Publicador:

Resumo:

本文探讨新生大鼠肾上腺皮质对高原低氧的应答及模拟高原低氧对其功能发育的影响。结果表明, 当不同日龄大鼠暴露于5 km 及7 km 海拔24 h, 7 d、14 d 龄大鼠肾上腺皮质无明显应答反应。21 d 及28 d 龄大鼠肾上腺皮质酮水平随海拔增高而增加, 血浆皮质酮表现为抑制作用。当1 d 龄新生大鼠在5 km 海拔高度发育3 d 和7 d,其肾上腺皮质功能无异于正常发育大鼠; 但发育14 d、21 d 及28 d, 其血液及肾上腺中皮质酮含量均明显低于对照组, 肾上腺皮质功能发育严重受抑。

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A sensitive method for the determination of free fatty acids using 2-(2-(anthracen-10-yl)-1H-naphtho[2,3-dimidazol-1-yl) ethyl-p-toluenesuIfonate (ANITS) as tagging reagent with fluorescence detection has been developed. ANITS could easily and quickly label fatty acids in the presence of the K2CO3 catalyst at 90 degrees C for 40 min in N,N-dimethylformamide solvent. From the extracts of rape bee pollen samples, 20 free fatty acids were sensitively determined. Fatty acid derivatives were separated on a reversed-phase Eclipse XDB-C8 column by HPLC in conjunction with gradient elution. The corresponding derivatives were identified by post-column APCI/MS in positive-ion detection mode. ANITS-fatty acid derivatives gave an intense molecular ion peak at mlz [M+H](+); with MS/MS analysis, the collision-induced dissociation spectra of m/z [M+H](+) produced the specific fragment ions at mlz [M-345](+) and mlz 345.0 (here, m/z 345 is the core structural moiety of the ANITS molecule). The fluorescence excitation and emission wavelengths of the derivatives were lambda(ex) = 250 nm and lambda(em) = 512 nm, respectively. Linear correlation coefficients for all fatty acid derivatives are > 0.9999. Detection limits, at a signal-to-noise ratio of 3 : 1, are 24.76-98.79 fmol for the labeled fatty acids.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

提出一种基于遗传算法的三维动态环境下的路径规划方法,通过对机器人的运动行为进行编码,将各种约束条件融入到遗传算法当中,规划出可实际应用的避障路径,仿真研究表明该方法是简单有效的。

Relevância:

80.00% 80.00%

Publicador:

Resumo:

本文提出了一种结构化环境下,基于立体视觉的机器人楼梯识别算法,并将算法该应到自主移动机器人上。该算法首先利用二维图像分析的方法搜索楼梯的疑似区域;进而利用立体视觉对各个疑似区域进行精确三维重建,结合三维信息重构楼梯平面,排除虚假疑似楼梯区域;最后判定机器人和楼梯的相对位姿关系,引导机器人爬楼梯。最终我们将该算法应用到了自主移动机器人上,通过在各种光照条件下的实验,进一步验证了该算法的准确性和快速性。

Relevância:

80.00% 80.00%

Publicador:

Resumo:

分析了轮式移动机器人(WMR)在不平坦的三维地形上运动的运动学模型.利用速度投影法,得到了WMR运动模型的一种新形式.基于虚拟现实技术,利用VC++OpenGL实现了WMR虚拟漫游系统.该系统具有较强的交互性和实时性,为星球探测机器人的虚拟导航、遥操作等提供了验证平台.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

利用单幅图象中物体的三条边与模型中的三条对应边,可求出三维物体姿态,但解不唯一,通过将这些可能姿态所产生的图象与实际图象匹配,可求出唯一正确姿态.二维图象特征对应问题是个NP完全问题,存在组合爆炸的困难,为此,我们把特征对应问题看作一个组合优化问题,利用Hopfield网络成功解决这一组合优化问题.该算法通用性强,而且适合于并行实现。文中给出了在Ⅵ-COM图象处理系统上对人造图象和实际图象进行的实验结果。

Relevância:

80.00% 80.00%

Publicador:

Resumo:

本文介绍了三维物体识别及姿态测定的一种新技术,从物体空间域模型出发,通过约束推理及几何推理,在物体三维信息部分给定的条件下,推断预测图象模型,并通过实测的图象数据反馈,推断出隐含在图象中未给定的三维信息,最终实现三维物体识别及姿态测定。整个系统在VICOM机上用C语言完成。

Relevância:

80.00% 80.00%

Publicador:

Resumo:

本文利用BP(Back-Propagation)人工神经网络对三维物体的姿态测定进行了研究。姿态测定一直缺少通用而实际的方法,人工神经网络由于具有强大的自组织、自适应学习能力,迅速的并行信息处理能力,可望解决这个问题。但现有BP算法存在训练慢和易陷入局部最小两个问题.本文提出的级联形式网络结构,使BP网络的训练速度大为提高,陷入局部最小的可能性大为降低。利用这种级联结构对飞机模型姿态测定,取得了较好的实验结果。

Relevância:

80.00% 80.00%

Publicador:

Resumo:

直角坐标机器人作为一种常用的工业机器人广泛应用于现代工业生产线中,其运动学和动力学特性关系整个生产线性能发挥。虚拟样机技术在复杂机械系统仿真中的成功应用不仅可以提高仿真精度,而且还可以缩短产品设计周期,对于工程实际具有重要的应用价值。通过虚拟样机技术,工程师可以通过机械系统运动仿真,在产品设计阶段发现产品设计中的潜在问题,并快速进行修改,减少了对于物理样机的依赖,这样不仅可以节省成本,缩短产品开发周期,而且还可以提高产品性能,增强产品竞争力。本文结合中科院沈阳自动化研究所现代装备研究设计中心的大型项目“激光拼焊生产线”,对生产线中从国外引进的上下料机器人进行研究分析,设计出一台可以满足“激光拼焊生产线”工业要求的上下料直角坐标机器人,来实现高性能上下料机器人的国产化。以设计出的上下料直角坐标机器人为研究对象,采用虚拟样机技术,以有限元法和多体系统动力学为理论基础,进行上下料直角坐标机器人机构的运动学和动力学分析仿真研究。其中研究了三维实体建模方法以及D-H方法,探讨了利用CAD/CAE软件SOLIDWORKS, ADAMS和ANSYS进行协同虚拟样机的建模、装配、数据共享、有限元静力分析以及刚柔耦合多体动力学仿真技术,研究成果对实际工程的运用具有一定的指导作用。本文主要的研究工作及其成果如下: 1根据工业生产线要求,确定高性能上下料直角坐标机器人总体机构设计方案,设计各个直线运动单元。 2利用CAD软件SOLIDWORKS对上下料直角坐标机器人进行3维实体建模,然后利用D-H方法,建立其运动学方程,最后利用MATLAB工具对运动学进行仿真。 3以有限元方法为基础,利用有限元分析软件ANSYS对上下料直角坐标机器人核心部件Y轴横梁静力分析,最后进行横梁结构优化。 4以多体系统动力学为基础,利用有限元软件ANSYS生成刚柔耦合多体动力学仿真所需的模态中性文件(MNF),同时结合运用ANSYS和ADAMS建立了上下料直角坐标机器人刚柔性耦合多体模型,并进行了动力学分析。

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the production tail of oilfield, water-cut is very high in thick channel sand oil reservoir, but recovery efficiency is relative low, and recoverable remaining oil reserves is more abundant, so these reserves is potential target of additional development. The remaining oil generally distributed with accumulation in certain areas, controlled by the reservoir architecture that mainly is the lateral accretion shale beddings in the point bar, so the study of reservoir architecture and the remaining oil distribution patterns controlled by architecture are very significant. In this paper, taking the Minghuazhen formation of Gangxi oilfield as a case, using the method of hierarchy analysis, pattern fitting and multidimensional interaction, the architecture of the meandering river reservoir is precisely anatomized, and the remaining oil distribution patterns controlled by the different hierarchy architecture are summarized, which will help to guide the additional development of oil fields. Not only is the study significant to the remaining oil forecasting, but also it is important for the theory development of reservoir geology. With the knowledge of sequence correlation and fluvial correlation model, taking many factors into account, such as combination of well and seismic data, hierarchical controlling, sedimentary facies restraint, performance verification and 3-D closure, an accurate sequence frame of the study area was established. On the basis of high-resolution stratigraphic correlation, single layer and oil sand body are correlated within this frame, and four architecture hierarchies, composite channel, single channels, point bars and lateral accretion sandbody are identified, The result indicates that Minghuazhen Formation of Gangxi oilfield are dominated by meandering river deposition, including two types of channel sandbodies, narrow band and wide band channel sandbody, and each of them has different characteristics of facies variation laterally. Based on the identification of composite channel, according to the spatial combination patterns and identified signs of single channel, combined with channel sandbody distribution and tracer material data, single channel sandbodies are identified. According to empirical formula, point-bar scales of the study area are predicted, and three identification signs are summarized, that is, positive rhythm in depositional sequence, the maximum thick sand and near close to the abandoned channel, and point bars are identified. On the basis of point bar recognition, quantitative architecture models inner point bar are ascertained, taking the lateral accretion sand body and lateral accretion shale beddings in single well as foundation, and quantitative architecture models inner point bar as guidance, and result of tracer material data as controlling, the the lateral accretion sand body and lateral accretion shale beddings are forecasted interwell, so inner architecture of point bar is anatomied. 3-D structural model, 3-D facies model and 3-D petrophysical properties models are set up, spatial distribution characteristics of sedimentary facies and petrophysical properties is reappeared. On the basis of reservoir architecture analysis and performance production data, remaining oil distribution patterns controlled by different hierarchy architecture units, stacked channel, single channel and inner architecture of point bar, are summarized, which will help to guide the additional development of oil fields.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, taking Madong district of Huanghua depression as a case, based on the theory of sequence stratigraphy, sedimentology, reservoir geology and geophysics, according to core analysis, seismic attribute analysis, logging constrained inversion, multi-data correlation of strata, reservoir modeling, etc. the lower and middle first member of Shahejie formation of the study area was forecasted and evaluated. As a result, a number of reservoir prediction and remaining oil distribution methods suitable to oil exploitation of gravity flow channel reservoir are presented. Scientific foundation is provided to the next adjustment of development program and exploitation of the remaining oil. According to high resolution sequence stratigraphy theory, precise stratigraphic framework was founded, the facies types and facies distribution were studied under the control of stratigraphic framework, the technologies of seismic attribute abstraction and logging constrained inversion. Result shows that gravity flow channel, as the main facies, developed in the rising period of base-level cycle, and it was formed during the phase of contemporaneous fault growth. As the channel extends, channel width was gradually widened but thickness thined. The single channels were in possession of a great variety of integrated modes, such as isolated, branching off, merging and paralleling, forming a kind of sand-mud interblending complex sedimentary units. Reservoir quality differs greatly in vertical and horizontal direction, and sedimentary microfacies is main controlling factor of the reservoir quality. In major channel, deposition thickness is great, and petrophysical property is well. While in marginal channel, reservoir is thinner, and petrophysical property is unfavorable. Structure and reservoir quality are main factors which control the oil and gas distribution in the study area. On the basis of the research about the reservoir quality, internal, planar and 3-D reservoir heterogeneities are characterized, and the reservoir quality was sorted rationally. At last, based on the research of reservoir numerical simulation of key well group, combined with reservoir performance analysis and geological analysis above, remaining oil distribution patterns controlled by internal rhythm of gravity flow channel were set up. Through this research, a facies-restrained reservoir prediction method integrating multi-information was presented, and potential orientation of remaining oil distribution in gravity flow channel reservoir is clarified.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Qinghai-Tibet Plateau lies in the place of the continent-continent collision between Indian and Eurasian plates. Because of their interaction the shallow and deep structures are very complicated. The force system forming the tectonic patterns and driving tectonic movements is effected together by the deep part of the lithosphere and the asthenosphere. It is important to study the 3-D velocity structures, the spheres and layers structures, material properties and states of the lithosphere and the asthenosphere for getting knowledge of their formation and evolution, dynamic process, layers coupling and exchange of material and energy. Based on the Rayleigh wave dispersion theory, we study the 3-D velocity structures, the depths of interfaces and thicknesses of different layers, including the crust, the lithosphere and the asthenosphere, the lithosphere-asthenosphere system in the Qinghai-Tibet Plateau and its adjacent areas. The following tasks include: (1)The digital seismic records of 221 seismic events have been collected, whose magnitudes are larger than 5.0 over the Qinghai-Tibet Plateau and its adjacent areas. These records come from 31 digital seismic stations of GSN , CDSN、NCDSN and part of Indian stations. After making instrument response calibration and filtering, group velocities of fundamental mode of Rayleigh waves are measured using the frequency-time analysis (FTAN) to get the observed dispersions. Furthermore, we strike cluster average for those similar ray paths. Finally, 819 dispersion curves (8-150s) are ready for dispersion inversion. (2)From these dispersion curves, pure dispersion data in 2°×2° cells of the areas (18°N-42°N, 70°E-106°E) are calculated by using function expansion method, proposed by Yanovskaya. The average initial model has been constructed by taking account of global AK135 model along with geodetic, geological, geophysical, receiving function and wide-angle reflection data. Then, initial S-wave velocity structures of the crust and upper mantle in the research areas have been obtained by using linear inversion (SVD) method. (3)Taking the results of the linear inversion as the initial model, we simultaneously invert the S wave velocities and thicknesses by using non-linear inversion (improved Simulated Annealing algorithm). Moreover, during the temperature dropping the variable-scale models are used. Comparing with the linear results, the spheres and layers by the non-linear inversion can be recognized better from the velocity value and offset. (4)The Moho discontinuity and top interface of the asthenosphere are recognized from the velocity value and offset of the layers. The thicknesses of the crust, lithosphere and asthenosphere are gained. These thicknesses are helpful to studying the structural differentia between the Qinghai-Tibet Plateau and its adjacent areas and among geologic units of the plateau. The results of the inversion will provide deep geophysical evidences for studying deep dynamical mechanism and exploring metal mineral resource and oil and gas resources. The following conclusions are reached by the distributions of the S wave velocities and thicknesses of the crust, lithosphere and asthenosphere, combining with previous researches. (1)The crust is very thick in the Qinghai-Tibet Plateau, varying from 60 km to 80 km. The lithospheric thickness in the Qinghai-Tibet Plateau is thinner (130-160 km) than its adjacent areas. Its asthenosphere is relatively thicker, varies from 150 km to 230 km, and the thickest area lies in the western Qiangtang. India located in south of Main Boundary thrust has a thinner crust (32-38 km), a thicker lithosphere of about 190 km and a rather thin asthenosphere of only 60 km. Sichuan and Tarim basins have the crust thickness less than 50km. Their lithospheres are thicker than the Qinghai-Tibet Plateau, and their asthenospheres are thinner. (2)The S-wave velocity variation pattern in the lithosphere-asthenosphere system has band-belted distribution along east-westward. These variations correlate with geology structures sketched by sutures and major faults. These sutures include Main Boundary thrust (MBT), Yarlung-Zangbo River suture (YZS), Bangong Lake-Nujiang suture (BNS), Jinshajiang suture (JSJS), Kunlun edge suture (KL). In the velocity maps of the upper and middle crust, these sutures can be sketched. In velocity maps of 250-300 km depth, MBT, BNS and JSJS can be sketched. In maps of the crustal thickness, the lithospheric thickness and the asthenospheric thickness, these sutures can be still sketched. In particular, MBT can be obviously resolved in these velocity maps and thickness maps. (3)Since the collision between India and Eurasian plate, the “loss” of surface material arising from crustal shortening is caused not only by crustal thickening but also by lateral extrusion material. The source of lateral extrusion lies in the Qiangtang block. These materials extrude along the JSJS and BNS with both rotation and dispersion in Daguaiwan. Finally, it extends toward southeast direction. (4)There is the crust-mantle transition zone of no distinct velocity jump in the lithosphere beneath the Qiangtang Terrane. It has thinner lithosphere and developed thicker asthenosphere. It implies that the crust-mantle transition zone of partial melting is connected with the developed asthenosphere. The underplating of asthenosphere may thin the lithosphere. This buoyancy might be the main mechanism and deep dynamics of the uplift of the Qinghai-Tibet hinterland. At the same time, the transport of hot material with low velocity intrudes into the upper mantle and the lower crust along cracks and faults forming the crust-mantle transition zone.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An high-resolution prestack imaging technique of seismic data is developed in this thesis. By using this technique, the reflected coefficients of sheet sands can be gained in order to understand and identify thin oil reservoirs. One-way wave equation based migration methods can more accurately model seismic wave propagation effect such as multi-arrivals and obtain almost correct reflected energy in the presence of complex inhomogeneous media, and therefore, achieve more superiorities in imaging complex structure. So it is a good choice to apply the proposed high-resolution imaging to the presatck depth migration gathers. But one of the main shorting of one-way wave equation based migration methods is the low computational efficiency, thus the improvement on computational efficiency is first carried out. The method to improve the computational efficiency of prestack depth migration is first presented in this thesis, that is frequency-dependent varying-step depth exploration scheme plus a table-driven, one-point wavefield interpolation technology for wave equation based migration methods; The frequency-dependent varying-step depth exploration scheme reduces the computational cost of wavefield depth extrapolation, and the a table-driven, one-point wavefield interpolation technology reconstructs the extrapolated wavefield with an equal, desired vertical step with high computational efficiency. The proposed varying-step depth extrapolation plus one-point interpolation scheme results in 2/3 reduction in computational cost when compared to the equal-step depth extrapolation of wavefield, but gives the almost same imaging. The frequency-dependent varying-step depth exploration scheme is presented in theory by using the optimum split-step Fourier. But the proposed scheme can also be used by other wave equation based migration methods of the frequency domain. The proposed method is demonstrated by using impulse response, 2-D Marmousi dataset, 3-D salt dataset and the 3-D field dataset. A method of high-resolution prestack imaging is presented in the 2nd part of this thesis. The seismic interference method to solve the relative reflected coefficients is presented. The high-resolution imaging is obtained by introducing a sparseness- constrained least-square inversion into the reflected coefficient imaging. Gaussian regularization is first imposed and a smoothed solution is obtained by solving equation derived from the least-square inversion. Then the Cauchy regularization is introducing to the least-square inversion , the sparse solution of relative reflected coefficients can be obtained, that is high-resolution solution. The proposed scheme can be used together with other prestack imaging if the higher resolution is needed in a target zone. The seismic interference method in theory and the solution to sparseness-constrained least-square inversion are presented. The proposed method is demonstrated by synthetic examples and filed data.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

China’s annual oil import volume has been increasing in recent years, but the oil price in the international market fluctuates and poses a severe threat to China’s economic development and national security. Therefore, it is of great importance to study the gas and oil exploration of Pre-Cenozoic Residual Basins in Yellow Sea. Yellow Sea has widespread and thick Mesozoic and Paleozoic strata that contain multilayer source rock. Hence, Yellow Sea Mesozoic and Paleozoic strata have good conditions of forming Pre-Cenozoic hydrocarbon reservoirs. Pre-Cenozoic Residual Basins are usually buried deep and then transformed many times in its long evolutional history. These characteristics make it difficult to apply a single method in exploring Pre-Cenozoic Residual Basins. On the other hand, it is highly effective to solve key problems of gas and oil exploration of Pre-Cenozoic Residual Basins in Yellow Sea by using integrated geological and geophysical methods which make full use of the advantages of various exploring techniques. Based on the principle of “the region controls the local; the deep restricts the shallow,” this study focuses on Pre-Cenozoic Residual Basins in Yellow Sea to describe the structure frame of its distribution, with gravity, magnetic, seismic, drill-hole and geological data and previous research findings. In addition, the distribution characteristics of Pre-Cenozoic Residual Basins in Yellow Sea are also analyzed. This paper explores the characteristics of error between gravity forward with constant density and gravity forward with variable density through the study on 2-D and 3-D gravity forward in frequency domain. The result shows that there is a linear relationship between error and depth of 2-D geological model but there is a nonlinear relationship between error and depth of 3-D geological model. The error can be removed according to its linear characteristics or statistical nature of nonlinear characteristics. There is also error between gravity inversion with constant density and gravity inversion with variable density due to variable density and edge-effect. Since there are not noticeable rules between the error and the two causes as variable density and edge-effect, this study adopts gravity inversion with variable density and methods to eliminate the edge-effect in basement inversion to improve inversion accuracy. Based on the study on the rock physical properties and strata distribution of Yellow Sea and adjacent regions, this study finds that there is a big density contrast between Cretaceous-Jurassic strata and their substratum. The magnetic basement of south Yellow Sea is regarded as top of Archeozoic-Proterozoic early strata, and there are double magnetic basements in north Yellow Sea. Gravity and magnetic data are used to inverse the gravity basement and magnetic basement of Yellow Sea, with seismic and drill-hole data as constrains. According to data of gravity and magnetic basement distribution, the depth of Cenozoic strata and previous research findings, this paper calculates the thickness of the Mesozoic and Pre-Mesozoic Residual Basins, draws the distribution outline of Pre-Cenozoic Residual Basins in Yellow Sea, and analyzes its macro-distribution characteristics. Gravity inversion is applied on a typical geological profile in Yellow Sea to analyze the characteristics of its fractures and magnetic basements. The characteristics of Pre-Cenozoic Residual Basins distribution outline in Yellow Sea and the fractures and magnetic basements of its typical profile shown by profile inversion provides new geophysical evidence for these structure views such as “the South Yellow Sea and the North Yellow Sea belong to different structural units” and “Sino-Korea and Yangtze blocks combine along Yellow Sea East Fractured Zone in Yellow Sea”.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Second Round of Oil & Gas Exploration needs more precision imaging method, velocity vs. depth model and geometry description on Complicated Geological Mass. Prestack time migration on inhomogeneous media was the technical basic of velocity analysis, prestack time migration on Rugged surface, angle gather and multi-domain noise suppression. In order to realize this technique, several critical technical problems need to be solved, such as parallel computation, velocity algorithm on ununiform grid and visualization. The key problem is organic combination theories of migration and computational geometry. Based on technical problems of 3-D prestack time migration existing in inhomogeneous media and requirements from nonuniform grid, parallel process and visualization, the thesis was studied systematically on three aspects: Infrastructure of velocity varies laterally Green function traveltime computation on ununiform grid, parallel computational of kirchhoff integral migration and 3D visualization, by combining integral migration theory and Computational Geometry. The results will provide powerful technical support to the implement of prestack time migration and convenient compute infrastructure of wave number domain simulation in inhomogeneous media. The main results were obtained as follows: 1. Symbol of one way wave Lie algebra integral, phase and green function traveltime expressions were analyzed, and simple 2-D expression of Lie algebra integral symbol phase and green function traveltime in time domain were given in inhomogeneous media by using pseudo-differential operators’ exponential map and Lie group algorithm preserving geometry structure. Infrastructure calculation of five parts, including derivative, commutating operator, Lie algebra root tree, exponential map root tree and traveltime coefficients , was brought forward when calculating asymmetry traveltime equation containing lateral differential in 3-D by this method. 2. By studying the infrastructure calculation of asymmetry traveltime in 3-D based on lateral velocity differential and combining computational geometry, a method to build velocity library and interpolate on velocity library using triangulate was obtained, which fit traveltime calculate requirements of parallel time migration and velocity estimate. 3. Combining velocity library triangulate and computational geometry, a structure which was convenient to calculate differential in horizontal, commutating operator and integral in vertical was built. Furthermore, recursive algorithm, for calculating architecture on lie algebra integral and exponential map root tree (Magnus in Math), was build and asymmetry traveltime based on lateral differential algorithm was also realized. 4. Based on graph theory and computational geometry, a minimum cycle method to decompose area into polygon blocks, which can be used as topological representation of migration result was proposed, which provided a practical method to block representation and research to migration interpretation results. 5. Based on MPI library, a process of bringing parallel migration algorithm at arbitrary sequence traces into practical was realized by using asymmetry traveltime based on lateral differential calculation and Kirchhoff integral method. 6. Visualization of geological data and seismic data were studied by the tools of OpenGL and Open Inventor, based on computational geometry theory, and a 3D visualize system on seismic imaging data was designed.