314 resultados para peptide adsorption
Resumo:
Adsorption of 4,4'-thiobisbenzenethiol (4,4'-TBBT) on a colloidal silver surface and a roughened silver electrode surface was investigated by means of surface-enhanced Raman scattering (SERS) for the first time, which indicates that 4,4'-TBBT is chemisorbed on the colloidal silver surface as dithiolates by losing two H-atoms of the S-H bond, while as monothiolates on the roughened silver electrode. The different orientations of the molecules on both silver surfaces indicate the different adsorption behaviors of 4,4'-TBBT in the two systems.
Resumo:
In this paper, we report a novel approach using peptide CALNN and its derivative CALNNGGRRRRRRRR (CALNNR(8)) to functionalize gold nanoparticles for intracellular component targeting. The translocation is effected by the nanoparticle diameter and CALNNR8 surface coverage. The intracellular distributions of the complexes are change from the cellular nucleus to the endoplasmic reticulum by increasing the density of CALNNR8 at a constant nanoparticle diameter. Additionally, increasing the nanoparticle diameter at a constant density of CALNNR8 leads to less cellular internalization.
Resumo:
This article deals with (1) synthesis of novel cyclic carbonate monomer (2-oxo [1,3]dioxan-5-yl)carbamic acid benzyl ester (CAB) containing protected amino groups; (2) ring-opening copolymerization of the cyclic monomer with L-lactide (LA) to provide novel degradable poly(ester-carbonate)s with functional groups; (3) removal of the protective benzyloxycarbonyl (Cbz) groups by catalytic hydrogenation to afford the corresponding poly(ester-co-carbonate)s with free amino groups; (4) grafting of oligopeptide Gly-Arg-Gly-Asp-Ser-Tyr (GRGDSY, abbreviated as RGD) onto the copolymer pendant amino groups in the presence of 1,1'-carbonyldiimidazole (CDI).
Resumo:
Amyloid beta peptide plays a critical role in the pathogenesis of Alzheimer's disease (AD). Metal ions are highly enriched in cerebral amyloid deposits in AD and are proposed to be able to mediate A beta conformation. Therefore, a rapid, low-cost, and sensitive detection of metal-induced A beta aggregation and their relation to AD is clearly needed for the clinical diagnosis and treatment. In this report, we study metal-induced A beta aggregation by a rapid, label-free electrochemical method and monitor both the aggregation kinetics and the morphology in the absence or presence of Zn (II) and Cu (II).
Resumo:
N-Methylimidazolium functionalized strongly basic anion exchange resins in the Cl- form (RCI) and SO46- form (R2SO4) were synthesized and employed for adsorption of Cr(VI) from aqueous solution. FT-IR and elementary analysis proved the structures of anion exchange resins and the content of functional groups. The gel-type strongly basic anion exchange resins had high thermal stability according to TGA and good chemical stability under the experimental conditions. The adsorption behaviors of Cr(VI) on RCI and R2SO4 were studied using the batch technique. It was shown that adsorption equilibrium was reached rapidly within 60 min. The adsorption data for RCI and R2SO4 were consistent with the Langmuir isotherm equation.
Resumo:
In this report, matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) was used to study the binding interactions between calmodulin and two target peptides (melittin and substance P). Various matrix conditions were tested and the less acidic matrix DHAP and THAP were found to favor the survival of the intact calcium-calmodulin as well as the calmodulin-peptide complexes. However, the application of direct MALDI-MS to detect the intact complexes turned out to be very difficult due to the dissociation of the complexes and the formation of nonspecific aggregates. In contrast, the specific binding of the target peptides to calmodulin could be easily deduced using intensity-fading (IF) MALDI-MS. Compared with the nonbinding control, clear reduction in the ion abundances of the target peptides was observed with the addition of calmodulin.
Resumo:
This paper described a double-chained cationic surfactant, didodecyldimethylammonium bromide (DDAB). for dynamic surface modification of poly(dimethylsiloxane) (PDMS) microchips to reduce the fluorescent dyes adsorption onto the microchannel. When DDAB with a high concentration was present as the dynamic modification reagent in the running and sample buffer, it not only reversed the direction of electroosmotic flow, but also efficiently suppressed fluorescent dyes pyronine Y (PY) or rhodamine 8 (RB) adsorption onto the chip surface. In addition, vesicles formed by DDAB in the buffer with higher surface charge density and electrophoretic mobility could provide wider migration window and potential for the separation of compounds with similar hydrophobicity. Factors affecting modification, such as pH and concentrations of the buffer, DDAB concentration in the buffer were investigated. Compared with commonly used single-chained cetyltrimethylammonium bromide, DDAB provided a better modification performance.
Resumo:
The adsorption of dopamine (DA) molecules on gold and their interactions with Fe3+ were studied by a microcantilever in a flow cell. The microcantilever bent toward the Au side with the adsorption of DA due to the change Of Surface stress induced by the intermolecular hydrogen bonds of DA or the charge transfer effect between adsorbates and the Substrate. The interaction process between DA adsorbates and Fe3+ was revealed by the deflection curves of microcantilever. As indicated by the appearance of a variation during the decline of curves, two steps were observed in the curve at relative high concentrations of Fe3+. In this case, Fe3+ reacted with DA molecules only in the outer layers and the complexes removed with solution. Then Fe3+ reacted further with DA molecules forming the surface complex in the first layer next to the gold. At this stage, the stability Of Surface complexes was time dependent, i.e., unstable initially and stable finally. This may be due to the surface complexes change from mono-dentate to bi-dentate complexes. In another case, i.e., at relative low concentration of Fe3+, only the first step was observed as indicated by the absence of a variation.
Resumo:
Chitosan(chitin)/cellulose composites as biodegradable biosorbents were prepared under an environment-friendly preparation processes using ionic liquids. Infrared and X-ray photoelectron spectra indicated the stronger intermolecular hydrogen bond between chitosan and cellulose, and the hydroxyl and amine groups were believed to be the metal ion binding sites. Among the prepared biosorbents, freeze-dried composite had higher adsorption capacity and better stability. The capacity of adsorption was found to be Cu(II) (0.417 mmol/g) > Zn(II) (0.303 mmol/g) > Cr(VI) (0.251 mmol/g) > Ni(II) (0.225 mmol/g) > Ph(II) (0.127 mmol/g) at the same initial concentration 5 mmol L-1. In contrast to some other chitosan-type biosorbents, preparation and component of the biosorbent were obviously more environment friendly. Moreover, adsorption capacity of chitosan in the blending biosorbent could be fully shown.
Resumo:
The adsorption behavior of exogenous thorium on soil was studied to evaluate the contaminated risk on soil. The adsorption capacity, equilibrium time, distribution coefficient and desorption ability were investigated by the experiments of static adsorption. The strong adsorption ability of exogenous thorium on soil samples was observed by high adsorption ratio (> 92%) and low desorption ratio (< 5%) in equilibrium, and the biggest distribution coefficient was over 10(4). The adsorption capacity and equilibrium time were related to soil properties. According to the results of adsorption, Freundlich equation (r >= 0.916 7) and Elovich equation (R-2 >= 0. 898 0) were primely fit for describing the thermodynamics and kinetics of the adsorption of exogenous thorium on soil samples, respectively, which indicated that the adsorption was belonged to the nonlinear adsorption, and was affected by the diffusion of thorium on soil surface and in mineral interbed. Sequential extraction procedure was employed to evaluate the bound fractions of exogenous thorium adsorbed on soil samples.
Resumo:
A polymeric gene carrier was developed to deliver vascular endothelial growth factor (VEGF) small interfering RNA (siRNA) for prostate cancer cells in a target-specific manner. Prostate cancer-binding peptide (PCP) was conjugated with polyethylenimine (PEI) via a poly(ethylene glycol) (PEG) linker (PEI-PEG-PCP). The PEI-PEG-PCP conjugate could effectively condense siRNA to form stable polyelectrolyte complexes (polyplexes) with an average diameter of approximately 150 nm in an aqueous solution. VEGF siRNA/PEI-PEG-PCP polyplexes exhibited significantly higher VEGF inhibition efficiency than PCP-unmodified polycationic carriers (PEI-PEG or PEI) in human prostate carcinoma cells (PC-3 cells). The enhanced gene silencing activity of VEGF siRNA/PEI-PEG-PCP was maintained even under serum conditions, owing to the steric stabilization of the polyplexes with hydrophilic PEG grafts. Confocal microscopic studies revealed that the siRNA/PEI-PEG-PCP polyplexes were delivered into PC-3 cells in a PCP ligand-specific manner.
Resumo:
A detailed investigation on the adsorption behavior of Neutral Red (NR) molecules on mercaptoethane sulfonate-monolayer protected gold clusters (MES-MPCs) has been conducted by the spectroscopic method. It is found that cationic NR molecules are adsorbed on the negatively charged MPCs surfaces via electrostatic attractive forces. The absorption study shows that the optical properties of NR molecules are significantly influenced upon the adsorption. Based on the electrostatic adsorption nature and the excellent stability of MES-MPCs against the electrolytes, this association can be released by the addition of electrolyte salts, which can be monitored by both absorption and fluorescence spectroscopy. In addition, dication Ca2+ is found to be more effective in the release of NR than univalent Na+. Moreover, the MES-MPCs exert energy transfer quenching of NR fluorescence by both static and dynamic quenching. However, static quenching seems to be the dominating quenching mechanism. Furthermore, this energy transfer quenching exhibits strong dependence of Au core size, and 5.0 nm MPCs show stronger ability in quenching the NR fluorescence than that of 2.7 nm MPCs.