211 resultados para Temperature range
Resumo:
Clinopyroxenes of the join CaMgSi2O6(diopside)-NaAlSi2O6 (jadeite) were synthesized in the temperature range 800-1900 degrees C and under varying pressure, 10-55 kbar. The stability regions of various compositions of diopside-jadeite have been established experimentally using different compositions of glass materials: stoichiometric composition NaAlSi2O6, 0.1CaMgSi(2)O(6)-0.9NaAlSi(2)O(6), 0.2CaMgSi(2)O(6)0.8NaAlSi(2)O(6), 0.3CaMgSi(2)O(6)-0.7NaAlSi(2)O(6), and 0.4CaMgSi(2)O(6)-0.6NaAlSi(2)O(6). Unit cell parameters of synthetic clinopyroxenes with the above compositions were determined. The physical properties, such as hardness, toughness, density, and refractive index, etc., were also measured. The results show that synthetic clinopyroxenes have the same properties as the natural one. The gem quality of diopside-jadeite clinopyroxenes was achieved by synthesised on the basis of the above experiments. Various colouring agents, such as Cr2O3, Co2O3, NiO2, Fe2O3, TiO2, MnO, CuO, and their combinations, FeO-Cr2O3, etc., were added to obtain the different colours of gem. In addition, small amounts of the rare-earth oxides, such as CeO2, Nd2O3, Sm2O3, Dy2O3, Eu2O3, Er2O3, Pr6O11, Lu2O3 and CuO-Eu2O3, Co2O3Nd2O3, etc., were also added to produce fluorescent clinopyroxenes for jewellery.
Resumo:
Three new oxides Ln(2)MCo(2)O(7) (Ln = Sm, Gd; M = Sr, Ba) have been synthesized in solid state reaction method. The powder X-ray diffraction spectra show that they are all isostructural with Sr3Ti2O7. The electrical resistivities in the temperature range 300-1100 K show that they are all semiconductors, and a transition to metals is observed at 1053, 1053, and 573 K for Sm2SrCo2O7, Gd2SrCo2O7, and Sm2BaCo2O7, respectively. The magnetic suspectivities of Gd2SrCo2O7 in the temperature range 300-673 K fit the Curie-Weiss law well. A plateau is observed in the curves of Sm(2)MCo(2)O(7) (M = Sr, Ba) which is attributed to the configuration state change of Co(III) from low spin to high spin. (C) 1995 Academic Press, Inc.
Resumo:
Jadeite was synthesized from its glass of stoichiometric composition NaAlSi2O6, and a colouring agent Cr2O3 (0.3-0.6 wt%) was added to achieve the emerald colour. The conditions employed were a pressure range of 3.0-5.0 GPa and a temperature range of 1150
Resumo:
Clinopyroxene NaAlSi2O6 was synthesized under varying pressures of 3.0-5.0GPa and at the temperature range of 1150.1750 degrees C, for periods of 1.480min. The glass material was completely transformed into homogeneous penetrating fibrous texture of clino
Resumo:
On the basis of the spin and valence state equilibria and superexchange interaction of the various cobalt ions in LaCoO3, an approximate semiempirical formula has been proposed and used to calculate magnetic susceptibilities of LaCoO3 over a wide temperature range (100-1200 K). The results indicate that there are thermodynamic equilibria between the low spin state Co(III) (t2g6e(g)0) ion, the high spin state Co3+ (t2g4e(g)2) ion, the Co(II) (t2g6e(g)1) ion and the Co(IV) (t2g5e(g)0) ion in LaCoO3. The energy difference between the low spin state Co(III) and the high spin state Co3+ is about 0.006 eV. The content of the low spin state Co(III) ion is predominant in LaCoO3 and the content of the high spin state Co3+ ion varies with temperature, reaching a maximum at about 350 K, then decreasing gradually with increasing temperature. At low temperature the contents of the Co(II) ion and the Co(IV) ion in LaCoO3 are negligible, while above 200 K the contents of both the Co(II) ion and the Co(IV) ion increase with increasing temperature; however, the content of the Co(II) ion always is larger than that of the Co(IV) ion at any temperature. These calculated results are in good agreement with experimental results of the Mossbauer effect, magnetic susceptibility and electrical conductivity of LaCoO3.
Resumo:
The paramagnetic susceptibility of lanthanum manganite has been measured over a wide temperature range (100-1073 K). On the basis of the thermodynamic equilibria between the various manganese ions with different valence and spin states and the magnetic interactions between the various manganese ions, a semiempirical formula has been proposed to calculate the paramagnetic susceptibilities of lanthanum manganite at different temperatures. The results indicate that most of the discrepancies between the calculated and experimental reciprocal susceptibilities of lanthanum manganite are less than 10% and that the relative contents of the various manganese ions in lanthanum manganite vary with temperature. The relative content of the trivalent manganese ion with a high spin state is dominant over the whole temperature range, while be relative content of the tetravalent manganese ion with a high spin state decreases monotonously with increasing temperature. At 300 K the calculated relative content of the tetravalent manganese ion in lanthanum manganite is about 34%, which is in good agreement with the experimental result (30%). There are some divalent manganese ions present in lanthanum manganite from low temperature to high temperature. The ratio of the relative contents of the tetravalent and divalent manganese ions in the compound varies with temperature. Above 750 K the relative content of the tetravalent manganese ion is less than that of the divalent manganese ion. The variation in the electrical resistivity of lanthanum manganite with temperature has also been interpreted reasonably.
Resumo:
Changes induced in the crystal structure of PTFE by irradiation at different temperatures have been investigated. In the dose and temperature range examined, the density of PTFE was observed to increase continuously with increasing dose due to the radiation-induced increase in crystallinity, while after post-irradiation annealing at 380-degrees-C, the density was observed to increase for samples irradiated at 20-degrees-C, and to begin to decrease after a certain dose for samples irradiated at 150 and 200-degrees-C. On the basis of the observation of radiation-induced separation of the melting peak of PTFE and its stability relative to the change in the rate of heating, the observed decrease in density was explained as being due to the radiation-induced crosslinking and/or branching inhibiting the process of crystallization and existing in the crystalline region as defects.
Resumo:
Infrared spectroscopy was used to study the structural phase, transitions of laurylammonium chloride in the temperature range from 290 to 365K. It was shown that there is a solid-solid phase transition at 339 K with a pre-transition at 327 K. The infrared spectra indicated that virgin crystals at room temperature form a well-ordered phase with all-trans hydrocarbon chains, and the lengths of N-H...Cl hydrogen bonds are different. The spectra suggested that the gauche conformers begin to appear at temperature above 327 K. The spectra at high temperature over 339 K demonstrated that the interaction between the chains decreases, the partial ''melting'' of the chains is obvious, and the hydrogen bonds (N-H...Cl) have the same lengths. The main transition and pre-transition are mainly assigned to the intramolecular and intermolecular order-disorder changes, respectively.
Resumo:
The infrared spectra of the bilayer system dodecylammonium chloride has been studied as a function of temperature. Unusual splitting of some vibrational modes helps us to characterize the structure of different solid states. This study provided the evidence for the occurrence of an order-disorder phase transition whose onset occurs at 327 K and its completion ends at 339 K. In the low temperature phase below 327 K, the virgin crystals form a well-ordered phase with all-transhydrocarbon chains. In the intermediate state between 327 and 339 K, the data demonstrate the introduction of intramolecular as well as intermolecular disorder. The coexistence of solid and liquid-crystal-like states is shown by the persistence of factor group splittings together with the existence of defect bands in the wide intermediate temperature range. In the high temperature phase over 339 K the crystals convert to a liquid-crystal-like system with extensive motional and conformational disorder, but still show characteristics in their infrared spectra which indicate the presence of ordered segments in the hexagonal solid phase.
Resumo:
In the Bi-based high-T(c) superconductors, three superconducting transition points were observed above the liquid-N2 temperature range. Allotropes of the 2212 phase were found. These allotropes were metastable and can interchange with the 2212 phase, and their T(c)'s vary from approximately 85 to approximately 100 K.
Resumo:
The thermal stability and the solid solid phase transitions in Ills compounds with n = 7-12 have been studied by DSC and TG methods. Comparision with CnZn compounds want made. The nature of three phases of CnCu has been discussed in terms of infrared spectroscopy and the assignment of the phase transitions has been given. The thermal stability of CnCu is lower than that of CnZn and presents an obvious odd even effect. All of these compounds exhibit two solid solid phase transitions in the temperature range of 248-337 K. The peak tempe nature of phase transitions changes regularly. The peak temperature or the main phase transition increases with the chain length. The total transition enthalpies and entropies increase with increasing chain length. When n <= 9, the high temperature phase exists in a partial disorder state. When n >= 10, the high temperature phase exists in a conformational disorder state. The main phase transition and the phase transition at 307.7 K of CnCu may mainly are from the change of the packing structure and the change of the partial conformational order-disorder of alkyl chain, respectively.
Resumo:
The low-frequency Raman spectrum of n-decylammonium chloride was measured as a function of temperature in the temperature range from 290 to 340K, and the longitudinal acoustical mode vibration band was assigned. The results showed that there are two phase transitions at 313K and 321K, respectively. The phase transition at 313K is mainly induced by change of hydrocarbon chain conformations, while that at 321K is mainly induced by change of order degree of molecular packing. The results suggest low-frequency Raman spectroscopy is a useful probe of structural phase transition for long-chain compounds.
Resumo:
The crystallization and melting behaviour of poly(aryl-ether-ether-ketone) (PEEK) in blends with another polymer of the same family containing a bulky pendant phenolphthalein group (PEK-C) have been investigated by thermal methods. The small interaction energy density of the polymer pair (B = -8.99 J/cm3), evaluated from equilibrium melting point depression, is consistent with the T(g) data that indicate partial miscibility in the melt. Two conjugated phases are in equilibrium at 430-degrees-C: one is crystallizable and contains about 35 wt% of PEK-C; the other, containing only 15 wt% of PEEK, does not form crystals upon cooling and it interferes with the development of spherulites in the sample. The analysis of kinetic data according to nucleation theories shows that crystallization of PEEK in the explored temperature range takes place in Regime III and that a transition to Regime II might be a consequence of an increase in the amount of non-crystallizable molecules in the PEEK-rich phase. A composition independent value of the end surface free energy of PEEK lamellae has been derived from kinetic data (sigma-e = 40 +/- 4 erg/cm2) in excellent agreement with previous thermodynamic estimates. A new value for the equilibrium melting temperature of PEEK (T(m)-degrees = 639 K) has been obtained; it is about 30-degrees-C lower than the commonly accepted value and it explains better the "memory effect" in the crystallization from the melt of this high performance polymer.
Resumo:
The proton-translocating NADH:ubiquinone oxidoreductase (complex I) has been purified from Aquifex aeolicus, a hyperthermophilic eubacterium of known genome sequence. The purified detergent solubilized enzyme is highly active above 50 degreesC. The specific activity for electron transfer from NADH to decylubiquinone is 29 U/mg at 80 degreesC. The A. aeolicus complex I is completely sensitive to rotenone and 2-n-decyl-quinazoline-4-yl-amine. SDS polyacrylamide gel electrophoresis shows that it may contain up to 14 subunits. N-terminal amino acid sequencing of the bands indicates the presence of a stable subcomplex, which is composed of subunits E, F, and G. The isolated complex is highly stable and active in a temperature range from 50 to 90 degreesC, with a half-life of about 10 h at 80 degreesC. The activity shows a linear Arrhenius plot at 50-85 degreesC with an activation energy at 31.92 J/mol K. Single particle electron microscopy shows that the A. aeolicus complex I has the typical L-shape. However, visual inspection of averaged images reveals many more details in the external arm of the complex than has been observed for complex I from other sources. In addition, the angle (90degrees) between the cytoplasmic peripheral arm and the membrane intrinsic arm of the complex appears to be invariant.
Resumo:
Using a radiolarian-based transfer function, mean annual sea surface temperature (SST) and seasonal temperature range are reconstructed through the last 10,500yrs in the northern Okinawa Trough. Down-core SST estimates reveal that throughout the Holocene the changes of mean annual SST display a three-step trend: (i) an early Holocene continuous warming between 10,500 and 8500yr BP which ends up with a abrupt cooling at about 8200yr BP; (ii) a relatively stable middle Holocene with high SST that lasted until 3200yr BP; and (iii) a late-Holocene distinct SST decline between 3200 and 500yr BP. This pattern is in agreement with the ice core and terrestrial paleoclimatic records in the Chinese continent and other regions of the world. Five cooling events with abrupt mean annual SST drops, which occur at similar to 300-600, 1400, 3100, 4600-5100 and 8200yr BP, are recognized during the last 10,500yrs. Comparison of our results with records of GISP2 ice core and marine sediment in North Atlantic region suggests these cooling events are strongly coupled, which implies a possible significant climatic correlation between high- and low-latitude areas. (C) 2007 Elsevier Ltd and INQUA. All rights reserved.