205 resultados para TRANSITION-METAL COMPLEXES
Resumo:
The organic sol method for preparing ultrafine transition metal colloid particles reported for the first time by Bonnemann et al. [H. Bonnemann, W Brijoux, R. Brinkmann, E. Dinjus, T. Jou beta en, B. Korall, Angew. Chem. Int. Ed. Engl., 30 (1991) 1312] has been improved in this paper. The improved organic sol method uses SnCl2 as the reductant and methanol as the organic solvent. Thus, this method is very simple and inexpensive. It was found that the average size of the Pt particles in the Pt/C catalysts can be controlled by adjusting the evaporating temperature of the solvent. Therefore, the Pt/C catalysts prepared by the same method are suitable for evaluating the size effect of the Pt particles on electrocatalytic performance for methanol oxidation. The results of the X-ray diffraction (XRD) and transmission electron microscopy (TEM) showed that when the evaporating temperatures of the solvent are 65, 60, 50, 40, and 30 degrees C, the average sizes of the Pt particles in the Pt/C catalysts prepared are: 2.2, 3.2, 3.8, 4.3, and 4.8 nm, respectively. The X-ray photoelectron spectroscopic (XPS) results demonstrated that the small Pt particles are easily oxidized and the decomposition/adsorption of methanol cannot proceed on the surfaces of Pt oxides.
Resumo:
NO decomposition reaction was investigated over La2-xThxCuO4, in which the valence of copper was controlled by Th substitution and was characterized by XPS measurement. A close correlation between the valence of copper and the activity was observed. The activity increased with the decrease of the average oxidation number of copper, and increased with the increase of Cu+ content, suggesting that the transition metal with low valence (Cu+) is active for the reaction in the present cases.
Resumo:
Geometries, vibrational frequencies, electron affinities, ionization potentials and dissociation energies of the title clusters in both neutral and positively and negatively charged states were studied by use of density functional theory. For both neutral and charged species, different initial isomers were studied in order to determine the structure with the lowest energy. Vibrational analysis was also performed in order to characterize these isomers. For Ta-2, Ta-Ta metallic bond is strengthened by adding or removing an electron, i.e. the charged species are much more stable than the neutral counterpart. For Ta-3, equilateral triangle with D-3h symmetry has the lowest energy for both neutral and charged species (near equilateral triangle for cation). TaO and its charged species have much larger dissociation energy compared with other tantalum oxides. For Ta2O and TaO2. structure with C-2v symmetry is much more stable than linear chains. For Ta3O, planar structure with doubly bridging oxygen atoms of C-2v, symmetry is the global minimum for both neutral and charged species. While for TaO3, three-dimensional structures are favored for both neutral (C-1 symmetry) and charged species (C-3v symmetry).
Resumo:
The stability constants and species distributions of complexes of two lanthanide ions, Eu (III) and Tb(III), with a macrocyclic ligand, 3,6, 9, 17 20, 23-hexaazo-29, 30-dihydroxy-13, 27-dimethyl-tricylco-[23,3,1,1(11,15)] triaconta-1 (28) 11,13,15 (30), 25 26-hexane (BDBPH), in 1: 1 and 2: 1 system, were determined potentiometrically in 50% ethanol solution, at 35.0 degrees C and I = 0.100 mol/L (KCl). The two metal ions could form deprotonated mono- or dinuclear complexes with BDBPH with high stability after the three protons of the ligand completely neutralized. At higher pH values, Eu(M) could not form hydroxo complexes with BDBPH, while Tb(III) could form hydroxo complexes in the types of M2L(OH) M2L(OH)(2) and M2L (OH)(2). The kinetic study on the hydrolysis reaction of his (4-nitrophenyl) phosphate (BNPP) catalyzed by Tb-BDBPH system (2:1) was carried out in aqueous solution (pH 7.0 similar to 10.0) at 35 degrees C with I = 0.1000 mol/L (KCl). The second-order rate constant k(BNPP) (2.3 x 10(-3) (mol/L)(-1)center dot s(-1)) was determined. The dinuclear monohydroxo species, L-Tb-2-OH, is kinetically active species.
Resumo:
The compounds (het)(PtCl6)2H(2)O 1, (het)(HgI4).H2O 2 (het = 2-(alpha-hydroxyethyl)thiamine) and (hpt)(Hg2Br6) 3 (hpt = 2-(alpha-hydroxypropyl)thiamine) have been prepared and structurally characterized by X-ray crystallography in order to study the influence of the anion and molecular conformation on the formation of supramolecular architectures that adsorb anionic species. Both het and hpt molecules adopt the usual S conformation for C2-substituted thiamine but differ from the F conformation for C2-free thiamine derivatives. Two types of characteristic ligand-anion complexation are observed, being of the forms C(6')-H...anion...thiazolium-ring (in 1 and 2) and N(4'1)-H...anion...thiazolium-ring (in 3). The reaction of het with PtCl62- or HgI42- gives a 1-D double-chain in 1, consisting of two hydrogen-bonded het chains, which are cross-linked by anions through hydrogen bonding and anion...aromatic-ring interactions, or a cationic 3-D framework in 2 formed by the stacking of hydrogen-bonded sheets with anion-and-water-filled channels. In the case of 3, hydrogen-bonded hpt dimers and HgBr62- anions form alternate cation-anion columns. A comparison with the cases of C2-free thiamine-anion complexes indicates that the change in molecular conformation results in novel supramolecular assemblies in 1 and 2 and an analogous architecture in 3, which also depends on the nature of the anions.
Resumo:
Based on the idea that the hardness of covalent crystal is intrinsic and equivalent to the sum of the resistance to the indenter of each bond per unit area, a semiempirical method for the evaluation of hardness of multicomponent crystals is presented. Applied to beta-BC2N crystal, the predicted value of hardness is in good agreement with the experimental value. It is found that bond density or electronic density, bond length, and degree of covalent bonding are three determinative factors for the hardness of a polar covalent crystal. Our method offers the advantage of applicability to a broad class of materials and initializes a link between macroscopic property and electronic structure from first principles calculation.
Resumo:
A new tetrakis praseodymium(tu) complex Pr(TFNB)(3)Phen has been synthesized, in which TFNB is 4,4,4-trifluoro-1-(2-naphthyl)-1,3-butanedione and Phen is 1,10-phenanthroline. Its crystal structure and luminescent spectra were successfully determined and investigated. The typical antenna effect existing in the luminescence of Pr(TFNB)(3)Phen was revealed by the study of the UV-Vis absorption spectra of ligands and the excitation spectrum of Pr(TFNB)(3)Phen.
Resumo:
Two novel electrochemiluminescent labels, bis(2,2'-bipyridine)[5-(3-carboxylic acid-propionamido)1,10-phenanthroline]ruthenium(II) hexafluorophosphate dihydrate and bis(2,2'-bipyridine)[5-(4-carboxylic acid-butanamido)-1,10-phenanthroline]ruthenium(II) hexafluorophosphate dihydrate, were synthesized and confirmed by IRelemental analysis, and H-1-NMR spectra were completely assigned using the (HH)-H-1-H-1 COSY technique. Cyclic voltammograms with different scan rates showed quasireversible electrochemical behaviour of the two Ru (II) complex labels in MeCN solution. Electronic absorption, photoluminescence and electrochemiluminescence of Ru(II) complexes were also characterized. Copyright (C) 2000 John Wiley & Sons, Ltd.
Resumo:
Through layer-by-layer assembly, undecatungstozincates monosubstituted by transition metals Mn, ZnW11 Mn (H2O) O-39(8-) was successfully immobilized on a glassy carbon electrode surface grafted covalently by 4-aminobenzoic acid. The electrochemical behavior of these polyoxometalates was investigated. Cyclic voltammetry proves the uniform growth of the film. They exhibit some special electrochemical properties in the films, different from those in homogeneous aqueous solution. The effect of pH on the redox behavior of ZnW11Mn(H2O)O-39(8-) in the film was discussed in detail. The multilayer film electrodes have an excellent electrocatalytic response to the reduction of H2O2 and BrO3-, and to the oxidation of ascorbic acid.
Resumo:
The adsorbed kinetics, proton transportation in electrochemical redox process of 4-pyridyl hydroquinone (4PHQ) self-assembled monolayer (SAM) modified Pt electrode were studied by electrochemical quartz crystal microbalance (EQCM) in situ. It proved that the electrode was modified by a monolayer and underwent a rapid electron transfer. It was a slow adsorbed kinetic process. The ion transfer in the electrochemical redox at the SAM-modified electrode surface mainly involved into the hydrate hydrogen ion.
Resumo:
Firstly reported for Fe-containing transition metal substituted polyoxometalates was an unusual Fe-centered demetalation process induced by the reduction of ZnW11FeIII to ZnW11FeII which resulted in a new couple of Fe-relating redox waves at positive potentials. (C) 1999 Elsevier Science S.A. All rights reserved.
Resumo:
Sandwich-like heteropoly molybdochromophosphates of supermolecular compound [NH3(CH2)(6)NH3](2)H-3{Cr[Mo6O15(HPO4)(H2PO4)(3)](2)}. 4H(2)O has been hydrothermally synthesized and the single crystal structure has been determined by X-ray diffraction. The crystal data are has follows: triclinic, space group P (1) over bar a=12.156(2), b=12.809(3), c=13.530(3) Angstrom, alpha=102.46(3)degrees, beta=93.67(3)degrees, gamma=93.46(3)degrees, V=2046.9(7) Angstrom(3), Z=1, M-r=2768.69, D-c=2.246 g/cm(-3), F(000)=1337, mu=2.162 mm(-1). The structure has been refined to R=0.0666 and wR=0.1745 by full-matrix least-squares method. The title compound is composed of 1, 6-diaminohexane, water molecules, and {Cr[Mo6O15(HPO4)(H2PO4)(3)](2)}(7-) anion which consists of six oxygen atoms from two [Mo6P4] units with a sandwich-like transition metal atom Cr located at the center of symmetry.
Resumo:
A new butterfly-like cluster [WOS3Cu2(PPh3)(2)(Py)(2)] was obtained by reacting [WOS3Cu2(PPb3)(3)] with pyridine. The crystal structure of the cluster has been determined by X-ray diffraction. The compound shows an unusual folded structure, in which two 4-coordinate Cu atoms are bound to the WOS3 moiety via two S-S edges.
Resumo:
K4H2CoW12O40. 2Ti02 . 9H(2)O crystallizes from an aqueous solution of Na2WO4, Co(OAc)(2) and Ti(SO4)(2). The compound has very similar i.r. and u.v. spectra to those of [CoW12O40](6-) and [CoW11TiO40](8-) but its polarographic behaviour is different from that of [CoW11TiO40](8-) and exhibits only reduction of tungsten(VI). A single crystal structural analysis indicates that this compound consists of the heteropolyanion [CoW12O40](6-), titanium-oxygen chain, potassium ions and water molecules.