213 resultados para SiSb phase change film


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The surface and interface morphologies of polystyrene (PS)/poly(methyl methacrylate) (PMMA) thin-film blends and bilayers were investigated by means of atomic force microscopy (AFM) and X-ray photoelectron spectroscopy. Spin-coating a drop of a PS solution directly onto a PMMA bottom layer from a common solvent for both polymers yielded lateral domains that exhibited a well-defined topographical structure. Two common solvents were used in this study. The structure of the films changed progressively as the concentration of the PS solution was varied. The formation of the blend morphology could be explained by the difference in the solubility of the two polymers in the solvent and the dewetting of PS-rich domains from the PMMA-rich phase. Films of the PS/PMMA blend and bilayer were annealed at temperatures above their glass-transition temperatures for up to 70 h. All samples investigated with AFM were covered with PS droplets of various size distributions. Moreover, we investigated the evolution of the annealed PS/PMMA thin-film blend and bilayer and gave a proper explanation for the formation of a relatively complicated interface inside a larger PS droplet.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The thin films of poly(methyl methacrylate) (PMMA), poly(styrene-co-acrylonitrile) (SAN) and their blends were prepared by means of spin-coating their corresponding solutions onto silicon wafers, followed by being annealed at different temperatures. The surface phase separations of PMMA/SAN blends were characterized by virtue of atomic force microscopy (AFM). By comparing the tapping mode AFM (TM-AFM) phase images of the pure components and their blends, surface phase separation mechanisms of the blends could be identified as the nucleation and growth mechanism or the spinodal decomposition mechanism. Therefore, the phase diagram of the PMMA/SAN system could be obtained by means of TM-AFM. Contact mode AFM was also used to study the surface morphologies of all the samples and the phase separations of the blends occurred by the spinodal decomposition mechanism could be ascertained. Moreover, X-ray photoelectron spectroscopy was used to characterize the chemical compositions on the surfaces of the samples and the miscibility principle of the PMMA/SAN system was discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A layered luminescent mesostructured thin film of silica-CTAB-Tb(acac)(3) composite has been synthesized by a dip-coating process through an in situ sol-gel method. The terbium (Tb3+) ion and beta-diketone organic ligand acetylacetone (acac) were introduced into the precursor solution, respectively. The as-synthesized composite film was transparent, colorless and possessed a layered structure. After the composite film was dried at 50 degreesC for a few minutes Tb(acac)(3) complex was synthesized in the mesostructured thin film, which can be indicated by the luminescence of the composite film under the UV lamp. The properties of the samples were characterized by XRD, absorption, Fourier transform infrared spectroscopy, and luminescent spectra.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A series of solid electrolytes Ce1-xSmxO2-y (x=0similar to0.6) were prepared by sol-gel method. XRD measurement showed that single-phase solid solution was formed in all investigated ranges at 160 degreesC, which is a significantly lower synthesis temperature compared to traditional solid state reaction. High temperature X-ray, ESR, and Raman scattering were used to characterize the samples. ESR measurement showed that ESR with sample irradiated by high-energy particle is an effective way to study the defect structure. These changes in the Raman spectrum are attributed to O vacancies, which are introduced into the lattice when tetravalent Ce4+ is substituted by trivalent Sm3+.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel hybrid photochromic composite film composed of Preyssler's heteropoly acid H-12[EuP5W30O110] (EuP5W30) and polyvinylpyrrolidone (PVP) was prepared by dip-coating method. Atomic force microscopy (AFM) was used to investigate the surface topography. The change of characteristic peak in the infrared spectra (IR) was investigated. The TG curve showed three steps of weight loss and approximately revealed the composition of the hybrid film. Ultraviolet-visible adsorption spectra (UV-VIS) and electron resonance spectrum (ESR) were used to investigate the photochromic behavior and mechanism of hybrid film. The photoluminescent behavior of the film at room temperature was investigated to show the characteristic Eu3+ emission pattern of D-5(o)-F-7(J). The occurrence of photoluminescent activity confirms the potential for creating luminescent thin film with polyoxometalates (POMs).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A transparent thin film was prepared by depositing the sol-get mixture for the synthesis of MCM-41 mesoporous molecular sieve doped with rhodamine 6G (R6G) dye on glass substrates. The film of silica-surfactant-R6G materials, which was identified to possess hexagonally ordered mesostructure, was composed of nanocrystallites about 35 nm in diameter and 1-10 mum in thickness. Cleanness of the substrates, concentration of the sol-gel mixture and rate of evaporation of the solvent were the key factors affecting transparency and homogeneity of the film. Moreover, optical change and lack in dye aggregation were observed to the R6G-functionalized MCM-41 thin film in contrast with that in ethanol solution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Phase behavior of the extraction system, Cyanex 923-heptane/Ce4+-H2SO4 has been studied and compared with Cyanex 923-heptane/H2SO4 System. Cerium(IV) is mainly extracted into the third phase, and its concentration in the third phase first increases with the increasing aqueous acid concentration, reaches maximum and then decreases. At higher acidity, cerium(IV) is hardly extracted in the third phase. The phase behavior and change of the contents of acid and water are similar to those in the acid system. The acid concentration increases with increase of the aqueous acid in the whole extraction region while the water content first decreases with it and then increases after the third phase formation. The third phase has a characteristic lamellar structure formed by the aggregates of Cyanex 923 (.) (H2SO4)(2) (.) H2O as those in the case of acid system. The third phase loaded Ce(IV) has been used to prepare ultrafine CeO2 powder conveniently by precipitation with oxalic acid, and powders with size mostly smaller than 100 nm can be obtained.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A nanoparticulate ferric oxide-copper tris(2,4-di-tert-amylphenoxy)-8-quinolinolylphthalocyanine hybrid ultrathin film was constructed from alternate layers by the Langmuir-Blodgett technique. The composition, morphology and structure of the film were studied by X-ray photoelectron spectroscopy (XPS), transmission electron microscopy, atomic force microscopy, small-angle X-ray diffraction, visible spectroscopy and polarized UV-Vis spectroscopy. All the above analyses suggest that the thin film is a kind of one-dimensional superlattice, composed of organic and inorganic components. The XPS data reveal that the nanoparticulate ferric oxide exists as an alpha-Fe2O3 phase in the films. Gas-sensing measurements show that the hybrid LB film has very fast response-recovery characteristics towards 2 ppm C2H5OH vapor.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nanoparticulate ferric oxide - tris - (2,4-di-t-amylphenoxy) - (8-quinolinolyl) copper phthalocyanine Langmuir-Blodgett Z-type multilayers were obtained by using monodisperse nanoparticle ferric oxide hydrosol as the subphase. XPS data reveal that the nanoparticle ferric oxide exist as alpha -Fe2O3 phase in the films. Transition electron microscopic (TEM) image of the alternating monolayer shows that the film was highly covered by the copper phthalocyanine derivative and the nanoparticles were arranged rather closely. IR and visible spectra all give the results that the nanoparticles were deposited onto the substrate with the copper phthalocyanine derivative. The gas-sensing measurements show that the alternating LB film had very fast response-recovery characteristic to 2 ppm C2H5OH gas, and also sensitive to larger than 200 ppm NH3.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report observation of inverted phases consisting of spheres and/or cylinders of the majority fraction block in a poly(styrene-b-butadiene-b-styrene) (SBS) triblock copolymer by solvent-induced order-disorder phase transition (ODT). The SBS sample has a molecular weight of 140K Da and a polystyrene (PS) weight fraction of 30%. Tapping mode atomic force microscopy (AFM) and transmission electron microscopy (TEM) were utilized to study the copolymer microstructure of a set of solution-cast SBS films dried with different solvent evaporation rates, R. The control with different R leads to kinetic frozen-in of microstructures corresponding to a different combination parameter chi (eff)Z of the drying films (where chi (eff) is the effective interaction parameter of the polymer solution in the cast film and Z the number of "blobs" of size equal to the correlation length one block copolymer chain contains), for which faster evaporation rates result in microstructures of smaller chi (eff)Z. As R was decreased from rapid evaporations (similar to0.1 mL/h), the microstructure evolved from a totally disordered one sequentially to inverted phases consisting of spheres and then cylinders of polybutadiene (PB) in a PS matrix and finally reached the equilibrium phase, namely cylinders of PS in a PB matrix. We interpret the formation of inverted phases as due to the increased relative importance of entropy as chi (eff)Z is decreased, which may dominate the energy penalty for having a bigger interfacial area between the immiscible blocks in the inverted phases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An amperometric tyrosinase enzyme electrode for the determination of phenols was developed by a simple and effective immobilization method using sol-gel techniques. A grafting copolymer was introduced into sol-gel solution and the composition of the resultant organic-inorganic composite material was optimized, the tyrosinase retained its activity in the sol-gel thin film and its response to several phenol compounds was determined at 0 mV vs. Ag/AgCl (sat. KCI). The dependences of the current response on pH, oxygen level and temperature were studied, and the stability of the biosensor was also evaluated. The sensitivity of the biosensor for catechol, phenol and p-cresol was 59.6, 23.1 and 39.4 muA/mM, respectively. The enzyme electrode maintained 73% of its original activity after intermittent use for three weeks when storing in a dry state at 4 degreesC. (C) 2000 Elsevier Science S.A. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel glucose biosensor based on cast lipid film was developed. This model of biological membrane was used to supply a biological environment on the surface of the electrode, moreover it could greatly reduce the interference and effectively exclude hydrophilic electroactive material from reaching the detecting surface. TTF was selected as a mediator because of its high electron-transfer efficiency, and it was incorporated in the lipid film firmly. Glucose oxidase was immobilized in hydrogel covered on the lipid film. The effects of pH, operating potential were explored for the optimum analytical performance by using amperometric method. The response time of the biosensor was less than 20 s, and the linear range is up to 10 mmol l(-1) (corr. coeff. 0.9932) with the detection limit of 2 x 10(-5) mol l(-1). The biosensor also exihibited good stability and reproducibility. (C) 2000 Elsevier Science S.A. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The preparation, structure, and electrochemical and electrocatalytical properties of a new polyoxometalate-based organic/inorganic film, composed of cetyl pyridinum 11-molybdovanadoarsenate (CPMVA) molecules, have been studied. Cyclic potential scanning in acetone solution led to a stable CPMVA film formed on a highly oriented pyrolytic graphite (HOPG) surface. X-ray photoelectron spectroscopy, scanning tunneling microscopy, and cyclic voltammetry were used for characterizing the structure and properties of the CPMVA film. These studies indicated that self-aggregated clusters were formed on a freshly cleaved HOPG surface, while a self-organized monolayer was formed on the precathodized HOPG electrode. The CPMVA film exhibited reversible redox kinetics both in acidic aqueous and in acetone solution, which showed that it could be used as a catalyst even in organic phase. The CPMVA film remained stable even at pH > 7.0, and the pH dependence of the film was much smaller than that of its inorganic film (H4AsMo11VO40) in aqueous solution. The CPMVA film showed strong electrocatalysis on the reduction of bromate, and the catalytic currents were proportional to the square of the concentration of bromate. The new kind of polyoxometalate with good stability may have extensive promise in catalysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Optically pumped stimulated emission behavior in an organic film was demonstrated in this study. The gain material consists of a laser dye perylene doped into polystyrene (PS) matrix in an appropriate weight ratio. The sample was transversely pumped by the three harmonic output of a mode-locked Nd:YAG laser. The change of the emission spectra showed a clear threshold action and gain narrowing phenomenon when increasing the excitation intensity. Three emission peaks were observed below the excitation threshold, which are locate at 446, 475 and 506 nm, respectively. However, only the gain narrowing peak centered at 475 nm could be detected above the threshold. The spectra narrowing observed results from the amplified spontaneous emission (ASE) in the gain material. (C) 2000 Elsevier Science S.A. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A stable lipid cast film was made by casting a lipid in chloroform onto a glassy carbon electrode. We imbedded a new mediator norepinephrine into this lipid cast film, which was considered as a biological membrane model. Through electro catalytic oxidation of ascorbic acid by this system, the anodic overpotential was reduced by about 250 mV compared with that obtained at a bare glassy carbon electrode. The electrochemical behavior of norepinephrine in the cast film was controlled by diffusion. The obtained diffusion coefficient of ascorbic acid was 1.87 x 10(-5) cm 2 s(-1). The catalytic current increased linearly with the concentration of ascorbic acid in the range from 0.5 to 10 mM. Using cyclic voltammetry, we obtained two peaks for ascorbic acid and uric acid in the same solution. The separation between the two peaks is about 147 mV. (C) 2001 Elsevier Science Ltd. All rights reserved.