347 resultados para SC(III)
Resumo:
BACKGROUND: Thermodynamics and kinetics data are both important to explain the extraction property. In order to develop a novel separation technology superior to current extraction systems, many promising extractants have been developed including calixarene carboxylic acids. The extraction thermodynamics behavior of calix[4]arene carboxylic acids has been reported extensively. In this study, the mass transfer kinetics of neodymium(III) and the interfacial behavior of calix[4]arene carboxylic acid were investigated.
Resumo:
The extraction behavior of Ce(IV) along with Th(IV) and Ln(III) (Ln = Ce, Gd, Yb) nitrate by pure ionic liquid, [C(8)mim]PF6, was investigated. [C(8)mim]PF6 alone showed good extraction ability for Ce(IV), while it was slight for Th(IV) and negligible for Ln(III). The extraction behavior of Ce(IV) by [C(8)mim]PF6 was particularly studied, and the most probable extraction mechanism proposed was the anion exchange mechanism. Moreover, the stripping of Ce(IV) from IL phase was also investigated. The Ce(IV) in IL phase can be quantitatively recovered by water.
Resumo:
In this paper, a quantum chemistry method was used to investigate the effect of different sizes of substituted phenanthrolines on absorption, energy transfer, and the electroluminescent performance of a series of Eu(TTA)(3)L (L = [1,10] phenanthroline (Phen), Pyrazino[2,3-f][1,10]phenanthroline (PyPhen), 2-methylprrazino[2,3-f][1,10] phenanthroline(MPP), dipyrido[3,2-a:2',3'-c]phenazine(DPPz), 11-methyldipyrido[3,2-a:2',3'c]phenazine(MDPz), 11.12-dimethyldipyrido[3,2-a:2',3'-c]phenazine(DDPz), and benzo[i]dipyrido[3,2-a:2',3'-c]phenazine (BDPz)) complexes. Absorption spectra calculations show that different sizes of secondary ligands have different effects on transition characters, intensities, and absorption peak positions.
Resumo:
Living characteristics of facilely prepared Ziegler-Natta type catalyst system consisting of iron(III) 2-ethylhexanoate, triisobutylaluminum and diethyl phosphite have been found in the polymerization of 1,3-butadiene in hexane at 40 degrees C. The characteristics have been well demonstrated by: a first-order kinetics with respect to monomer conversion, a narrow molecular weight distribution (M-w/M-n = 1.48-1.52) of polybutadiene in the entire range of polymerization conversion and a good linearity between M-n and the yield of polymer. Feasible post-polymerization of 1,3-butadiene and block co-polymerization of 1,3-butadiene and isoprene further support the living natures of the catalyst bestowed with.
Resumo:
Quantum-chemistry methods were explored to investigate the electronic structures, injection and transport properties, absorption and phosphorescence mechanism of a series of blue-emitting Ir(III) complexes {[(F-2-ppy)(2)Ir(pta -X/pyN4)], where F-2-ppy = (2,4-difluoro)phenylpyridine; pta = pyridine-1,2,4-triazole; X = phenyl(1); p-tolyl (2); 2,6-difluororophenyl (3); -CF3 (4), and pyN4 = pyridine-1,2,4-tetrazolate (5)}, which are used as emitters in organic light-emitting diodes (OLEDs). The mobility of hole and electron were studied computationally based on the Marcus theory. Calculations of Ionization potentials (IPs) and electron affinities (EAs) were used to evaluate the injection abilities of holes and electrons into these complexes.
Resumo:
A trivalent neodymium ion (Nd3+) complex Nd(PM)(3)(TP)(2) was synthesized, and its optical properties was studied by introducing Judd-Ofelt theory to calculate the radiative transition rate and the radiative decay time of the F-4(3/2) -> (4)l(J), transitions in this Nd(III) complex. The strong emissions of this complex at near-infrared region were owing to the efficient energy transfer from ligands to center metal ion. The potential application of this complex in NIR electroluminescence was studied by fabricating several devices. The maximum NIR irradiance was obtained as 2.1 mW/m(2) at 16.5 V.
Resumo:
A series of novel, colorless, and transparent sot-gel derived hybrid materials Ln-DBM-Si covalently grafted with Ln(DBM-OH)(3)center dot 2H(2)O (where DBM-OH = o-hydroxydibenzoylmethane, Ln = Nd, Er, Yb, and Sin) were prepared through the primary beta-diketone ligand DBM-OH. The structures and optical properties of Ln-DBM-Si were studied in detail. The investigation results revealed that the lanthanide complexes were successfully in situ grafted into the corresponding hybrids Ln-DBM-Si. Upon excitation at the maximum absorption of ligands, the resultant materials displayed excellent near-infrared luminescence.
Resumo:
An imidosamarium(III) cubane has been prepared from the reductive cleavage of azobenzene by a divalent samarium bis (amidinate) complex, indicating that the "spectratoe" bis(amidinate) and the resulting imido ligands help to stabilize the cubane framework. The cubane-type imido cluster is a novel unit in lanthanide chemistry.
Resumo:
A beta-diketone ligand 4,4,5,5,5-pentafluoro-1-(2-naphthyl)-1,3-butanedione (Hpfnp), which contains a pentafluoroalkyl chain, was synthesized as the main sensitizer for synthesizing new near-infrared (NIR) luminescent Ln(pfnp)(3)phen (phen = 1,10-phenanthroline) (Ln = Er, Nd, Yb, Sm) complexes. At the same time, a series of lanthanide complexes covalently bonded to xerogels by the ligand 5-(N,N-bis-3-(triethoxysilyl)propyl)ureyl-1,10-phenanthroline (phen-Si) were synthesized in situ via a sol-gel process. [The obtained materials are denoted as xerogel-bonded Ln complexes (Ln = Er, Nd, Yb, Sm).] The single crystal structures of the Ln(pfnp) 3phen complexes were determined.
Resumo:
Two 3d-4f heterometallic compounds of p-tert-butylsulfinylcalix[4] arene were synthesized by the solvothermal method and characterized by some hinged double-dumbbell-like subunits in which two perpendicular dumbbell entities were constructed by an in-between isosceles triangle Mn(II)Ln(2)(III), and two tail-to-tail calixarene molecules, and hinged by the lanthanide-sulfinyl group bonding. The magnetic properties of the title compounds were examined.
Resumo:
This paper reports the syntheses, crystal structures, and luminescent and magnetic properties of four tetranuclear Tb-III (1 and 3) and Dy-III (2 and 4) complexes supported by p-phenylthiacalix[4]arene (H(4)PTC4A) and p-tert-butylthiacalix-[4]arene (H(4)TC4A). All four frameworks can be formulated as [Ln(4)(III)(PTC4A/TC4A)(2)(mu(4)-OH)Cl-3(CH3OH)(2)(H2O)(3)], and some methanol and water solvent molecules are occupied in the interstices. The compounds are featured with a sandwichlike unit constructed by two tail-to-tail calixarene molecules and a planar tetragonal (mu(4)-OH)Ln(4) cluster. The photoluminescent analyses suggest that there is an efficient ligand-to-Ln(III) energy transfer for compounds 1-3 and H(4)PTC4A is a more efficient "antenna" than H(4)TC4A.
Resumo:
A series of silica-based organic–inorganic hybrid materials were prepared by the sol–gel process for Cr(III) and Cr(VI) adsorption. These silica materials generally had high surface areas, good physical–chemical stability and high thermal stability. Trialkylmethylammonium bis 2,4,4-trimethylpentylphosphinate ([A336][C272]) and trihexyl(tetradecyl)phosphonium bis 2,4,4-trimethylpentylphosphinate (Cyphos IL 104) were explored as porogens to prepare porous silica and as extractants to extract chromium ions. Cyphos IL 104 and [A336][C272] functionalized silica sorbents (SG-2, SG-5) can be effectively used for the removal of Cr(III) and Cr(VI) from aqueous solutions by adjusting pH values, whereas trialkylmethylammonium chloride (Aliquat 336) and bis(2,4,4-trimethylpentyl)phosphinic acid (Cyanex 272) functionalized silica sorbents (SG-3, SG-4) can only be used for the removal of the single chromium species, Cr(VI) or Cr(III).
Resumo:
The synthesis, isomeric studies, and photophysical characterization of a series of multifunctional cyclometalated iridium(III) complexes containing a fluoro- or methyl-substituted 2[3-(N-plienylcarbazolyl)]pyridine molecular framework are presented. All of the complexes are thermally stable solids and highly efficient electrophosphors. The optical, electrochemical, photo-, and electrophosphorescence traits of these iridium phosphors have been studied in terms of the electronic nature and coordinating site of the aryl or pyridyl ring substituents. The correlation between the functional properties of these phosphors and the results of density functional theory calculations was made. Arising from the propensity of the electron-rich carbazolyl group to facilitate hole injection/transport, the presence of such a moiety can increase the highest-occupied molecular orbital levels and improve the charge balance in the resulting complexes relative to the parent phosphor with 2-phenylpyridine ligands. Remarkably, the excited-state properties can be manipulated through ligand and substituent effects that allow the tuning of phosphorescence energies from bluish green to deep red.
Resumo:
The nano-scale luminescent complex of Terbium(III)-trimesic acid (TMA)-1,10-phenanthroline(phen) was successfully synthesized by co-precipitation method in this paper. The chemical formula of the synthesized complex was speculated to be Tb(TMA)(phen)(0.0125)center dot 5H(2)O by elemental analysis, inductively coupled plasma-atomic emission spectroscopy (ICP-AES), and Fourier-transform infrared spectroscopy (FTIR). XRD pattern of Tb(TMA)(phen)(0.0125)center dot 5H(2)O indicated that it was a new crystalline complex since the diffraction angle, diffraction intensity and the distance of crystal plane were all different from those of the two ligands. TG curve proved that the synthesized nano-scale luminescent complex was stable in the range from ambient temperature to 464 degrees C in air. TEM images showed that the complex was spherical shape with an average size of 40 nm.
Resumo:
By fusing an electron-deficient ring system with the phenyl ring of a 2-phenylpyridine (ppy)-type ligand, a new and synthetically versatile strategy for the phosphorescence color tuning of cyclometalated iridium(III) and platinum(II) metallophosphors has been established. Two robust red electrophosphors with enhanced electron-injection/electron-transporting features were prepared by using an electron-trapping fluoren-9-one chromophore in the ligand design. The thermal, photophysical, redox and electrophosphorescent properties of these complexes are reported. These exciting results can be attributed to a switch of the metal-to-ligand charge-transfer (MLCT) character of the transition from the pyridyl groups in the traditional Ir-III or Pt-II ppy-type complexes to the electron-deficient ring core, and the spectral assignments corroborate well with the electrochemical data as well as the timedependent density functional theory (TD-DFT) calculations. The electron-withdrawing character of the fused ring results in much more stable MLCT states, inducing a substantial red-shift of the triplet emission energy from yellow to red for the Ir-III complex and even green to red for the PtII counterpart.