228 resultados para Pct Sb Alloy
Resumo:
The electrochemical properties of the Ti0.17Zr0.08V0.35Cr0.10Ni0.30 alloy electrode were investigated. This alloy has good cycle life at 303 K, 313 K, and even at 323 K, but the discharge capacity decreases gradually at 333 K with increasing cycle number. Both the charge-discharge efficiency and the charge-discharge voltage reduce. The electrochemical impendence spectra indicate that the charge-transfer resistance decreases while the exchange current density increases as temperature increases. The apparent activation energy of the charge-transfer reaction is about 50 kJ mol(-1), which is higher than that on the AB(5) type alloy electrode.
Resumo:
A bulk Ti45Zr35Ni17Cu3 alloy, which consisted of the icosahedral quasicrystalline phase, was prepared by mechanical alloying(MA) and subsequent pulse discharge sintering. Ti45Zr35Ni17Cu3 amorphous powders (with particle size < 50 mu m) were obtained after mechanical alloying for more than 150 h from the mixture of the elemental powder. The transformation temperature range from amorphous phase to the quasicrystalline phase was from 400 K to 900 K. The mechanical properties of the bulk quasicrystalline alloy have been examined at room temperature. The Vickers hardness and compressive fracture strength were 620 +/- 40 and 1030 +/- 60 MPa, respectively. The bulk quasicrystalline alloy exhibited the elastic deformation by the compressive test. The fracture mode was brittle cleavage fracture.
Resumo:
Mg-20Gd(%, mass fraction) samples were prepared using melt-spinning and copper mold casting techniques. Microstructures and properties of the Mg-20Gd were investigated. Results show that the melt-spun ribbon is mainly composed of supersaturated alpha-Mg solid solution phase and the as-east ingot mainly contains alpha-Mg solid solution and Mg5Gd phase. The differential scanning calorimeter (DSC) curve of the ribbon exhibits a small exothermic peak in the temperature range from 630 to 680 K, which indicates that the ribbon contains a metastable phase (amorphous). Tensile strength at room temperature of the melt-spun ribbon and as-cast specimen are 308 and 254 MPa, respectively. The elongations of the two samples are less than 2%. The fracture surfaces demonstrate that the fracture mode of the as-cast Mg-20Gd is a typical cleavage fracture and that of the melt-spun sample is a combination of brittle fracture and ductile fracture.
Resumo:
For improving the electrode characteristics of the Zr-based AB(2)-type alloy, a new kind of composite hydrogen Zr0.9Ti0.1(Ni0.50Mn0.35V0.15)(2)(represented as AB(2)) with a rare storage alloy was successfully prepared by ball-milling I earth-based AB(5)-type alloy (represented as AB(5)) which worked as a surface modifier. Effects of ball-milling on the electrode characteristics and microstructure of Zr0.9Ti0.1(Ni0.50Mn0.35V0.15)(2) alloy and mixtures of AB(2) with AB(5) alloy were investigated. After milling the mixed AB(2) and AB(5) powders (9: 1 in mass ratio) for 10min, XRD and SEM analysis showed that AB(2) and AB(5) maintained their original crystalline states, respectively, some AB(5) particles were adhered onto the surface of AB(2), and some fresh surfaces were formed. It was found that the activation cycles of AB(2)-AB(5) composite alloy was shortened from 14 to 7 and the maximum discharge capacity was increased from 330mAh . g(-1) to 347mAh . g(-1) as compared with AB(2) alloy. The discharge rate capability of AB(2) alloy was also improved by ball milling AB(2) with AB(5) alloy process. The combined effect of ball-milling and mixing with AB(5) alloy is superior to that of sole treatment. It was believed that AB(5) alloy works not only as a regular hydrogen storage alloy, but also as a surface modifier to catalyze the hydriding/ dehydriding process of AB(2) alloy.
Resumo:
Electrochemical properties of rare earth AB(3)-type hydrogen storage alloys as negative electrode material and a polymer instead of 6 M KOH aqueous solution as solid state electrolyte in MH-Ni battery have been investigated at room temperature and 28degreesC first time. The partial replacement of Ni by Al and Mn elements increases the specific capacity and cycle stability of the alloy.
Resumo:
The energy band structures of LaX(X=N, P, As, Sb) crystals have been studied by using LMTO-ASA method. The calculated energy gaps of these crystals are 2. 30 eV for LaN, 2. 05 eV for LaP, 1. 66 eV for LaAs and 1. 34 eV for LaSb. The results are in good agreement with experimental data, At the same time, using these calculated results of energy band structures of these crystals, the chemical bond properties have been analyzed and calculated, The covalency values of these crystals are 26.15% for LaN, 32.54% for LaP, 33.30% for LaAs and 36.49% for LaSb, which agree satisfactorily with the calculated ones by using PV (Phillips-Vechten) theory.
Resumo:
用LMTO-ASA能带程序计算了LaX(X=N,P,As,Sb)晶体的能带结构,得到的晶体能隙分别为LaN2.30eV,LaP2.05eV,LaAs1.66eV,LaSb1.34eV,与实验结果基本相符.利用价电子总数在阴阳离子上的分配数之比,给出计算晶体化学键性质的经验关系式,根据该式计算晶体化学键的共价性与文献结果非常吻合,说明了该关系式的合理性
Resumo:
以Philips-VanVechten理论和晶体光学性质为基础,计算了LaX(X=N,P,As,Sb)晶体的离子半径(单位:nm):(La:N)为(0.1414,0.1236),(La:P)为(0.1518,0.1489),(La:As)为(0.1536,0.1526),(La:Sb)为(0.1586,0.1651).用LMTO-ASA方法对LaX系列晶体的能带结构进行了计算.所得到的能隙是:LaN为2.30eV,LaP为2.05eV,LaAs为1.66eV,LaSb为1.34eV.与实验结果相符.这也证明了作者得到的半径的合理性.
Resumo:
The electrochemical performance of Laves phase alloys LaAl2 and LaAl1.5Ni0.5 were investigated. The results showed that LaAl2 alloy milled for 2 hours has the larger discharge capacity than that of as-cast alloy. In addition, partial substitution of Ni for Al will clearly increases the discharge capacity of milled LaAl2 alloy.
Resumo:
An electrolysis technique for co-deposition of Ca2+ and Na+ at the liquid lead cathode was put forward. The experiment was carried out at an electrolysis temperature below 650 degrees C and had a current efficiency of 98%, which are respectively 100 similar to 300 degrees C lower and 15% similar to 30% higher than those reported both at home and abroad.
Resumo:
By using Pillips and van Vechten theory, the chemical bond parameters and dielectric constants of REM (RE=rare earth, M=N, P, As, Sb) crystals were calculated. The values calculated of dielectric constants agree with the experimental values.
Resumo:
利用Philips和VanVechten理论计算了稀土REM(M=N、P、As、Sb)晶体的化学键参数和介电常数,ε的计算结果和已知的实验值符合很好。
Resumo:
With XRD, R- T curves, and a.c chi measurements, the doping and codoping effects of Sb and V to a Cu-deficient Pb-doped Bi system have been studied. A sample singly doped with V possesses a T(c) about 2 K lower than that of a sample singly doped with Sb. This is attributed to the different sites of their substitution. It was observed that for promoting 2223 phase formation, Sb and V works cooperatively, and the codoping of Sb may enhance the 2223 phase formed. With a low doping level of Sb, the optimum doping amount of V is 0.3, i.e., with a nominal composition of Bi1.5Pb0.3Sb0.06Sr2Ca2Cu2.4V0.3Oy. A sample in which the 2223 phase is the dominant phase and which has a zero resistance transition temperature of 105 K has been obtained.
Resumo:
本文研究了单掺(Sm~(3+),Ce~(3+)、Gd~(3+).Sb~(3+)、双掺(Sm~(3+)+Ce~(3+)、Sm~(3+)+Gd~(3+),Sm~(3+)+Sb~(3+))和兰掺(Sm~(3+)+Gd~(3+)+Ce~(3+))约四十余种不同玻璃的发射谱和激发谱.探讨了玻璃成份和掺杂离子浓度对Sm~(3+)发光性质的影响以及Ce~(3+),Gd~(3+)、Sb~(3+)、Ce~(3+)+Gd~(3+)对Sm~(3+)的敏化作用。
Resumo:
考察了不同组成的V-Sb-O系复合氧化物对丙烷氨氧化的催化活性.用XRD研究了催化剂的结构,利用程序升温方法研究了催化剂中氧的活动性和表面酸碱性,讨论了催化剂体相和表面结构与催化性能间的关系.结果表明,VSbO_4和Sb_2O_4间的协同作用是影响催化活性的重要因素.