233 resultados para Interspecific hybrid
Resumo:
In this paper, a simple route to the fabrication of palladium nanosheets is described. The interaction of palladium chloride (PdCl2) and n-octylamine salt resulted in the formation of a quasi-perovskite-type composite with a layered structure on a molecular scale. This composite can be employed as a template for preparing ultrathin Pd nanosheets when a {PdCl4}(2-) network is reduced in situ by hydrogen in toluene. The x-ray diffraction results indicate that the resulting Pd nanosheets are highly ordered, and they are confined inside the organic matrix as evidenced by high resolution transmission electron microscopy. These Pd nanosheets can be reorganized into layered structures in non-polarized organic solvent when the ordered structure is destroyed. This method of preparing Pd nanosheets is expected to be applicable to other layered organic/inorganic perovskite systems for obtaining the corresponding metal nanosheets.
Resumo:
Micro-failure modes and statistical fragment lengths in the hybrid fiber and non-hybrid reference composites in the uniaxial tension were investigated. Similiar to the reference experiments, fibers in hybrid strong interface/medium interface fiber composites display a decrease in aspect ratio and an increase in interfacial shear stress (IFSS) with the increase of inter-fiber spacing. While for the fibers with weak interfaces in the hybrid strong interface/weak interface fiber composites, the aspect ratio increases and IFSS decreases with enlargement of inter-fiber spacing, which is contrary to other systems. Finite element numerical analysis was used to interpret the special phenomena.
Resumo:
We report the construction of hybrid permeable-base transistors, in vertical architecture, using tris(8-hydroxyquinoline) aluminum as emitter, a thin gold layer as base, and n-type silicon as collector. These transistors present high common-base current gain, can be operated at low driving voltages, and allow high current density.
Resumo:
The structure of the title compound, [Cu2Cl2(C12H10N2)](n), contains infinite CuCl staircase-like chains, which lie about inversion centres. The trans-1,2-di-4-pyrid-ylethyl-ene mol-ecules also lie about inversion centres and connect the CuCl chains through Cu-N coordination bonds into a two-dimensional organic-inorganic hybrid network. The planar sheets are stacked along the c axis and associated through weak C-H center dot center dot center dot Cl inter-actions. The results show a reliable structural motif with controllable separation of the CuCl chains by variation of the length of the ligand.
Resumo:
Perovskite-type organic/inorganic hybrid layered compound (C6H5C2H4NH3)(2)PbI4 was synthesized. The patterning Of (C6H5C2H4NH3)(2)PbI4 thin films on silicon substrate was realized by the micromolding in capillaries (MIMIC) process, a kind of soft lithography. Bright green luminescent stripes with different widths (50, 15, 0.8 mum) have been obtained. The structure and optical properties Of (C6H5C2H4NH3)(2)PbI4 films were characterized by X-ray diffraction (XRD), UV/Vis absorption and photoluminescence excitation and emission spectra, respectively. It is shown that the organic-inorganic layered (C6H5C2H4NH3)(2)PbI4 film was c-axis oriented, paralleling to the substrate plane. Green exciton emission at 525 nm was observed in the film, and the explanations for it were given.
Resumo:
Tetrakis (N-methylpyridyl) porphyrinato] cobalt (CoTMPyP) and 1:12 silicotungstic acid (SiW12) were alternately deposited on a 4-aminobenzoic acid (4-ABA)-modified glassy carbon electrode through a layer-by-layer method. The resulting organic-inorganic hybrid films were characterized by cyclic voltammetry (CV) and UV/vis absorption spectroscopy. We proved that the prepared multilayer films are uniform and stable. SiW12-containing multilayer films (SiW12 as the outermost layer) exhibit remarkable electrocatalytic activity for the hydrogen evolution reaction (HER). The kinetic constants for HER were comparatively investigated at different layers Of SiW12/CoTMPyP multilayer film-modified electrodes by hydrogen evolution voltammetry. In addition, rotating disk electrode (RDE) and rotating ring-disk electrode (RRDE) voltammetric methods confirm that SiW12/CoTMPyP (CoTMPyP as the outermost layer) multilayer films catalyze almost a two-electron reduction of O-2 to H2O2 in pH 1-6 buffer solutions. Furthermore, P2W18/CoTMPyP films were also assembled, and their catalytic activity for HER is very different from that Of SiW12/CoTMPyP multilayer films.
Resumo:
We construct a hybrid bilayer membrane (HBM) on a new substrate-carbon electrode. It is an extension of HBM based on other substrates. Primary alkylamine was chemically modified onto the surface of a carbon electrode by electrochemical scans; thus, a monolayer was formed on the electrode. Because the alkane chains section is toward the outside, a hydrophobic surface was constructed. Then a lipid monolayer was spread on the hydrophobic surface of the carbon electrode. The formed HBM was characterized by electrochemical and ATR-FT-IR methods. From ATR-FT-IR results, the lipid order parameter (S) of 0.73 was obtained. This kind of hybrid membrane has the advantages of a lipid/alkanethiol HBM. A potential application of this HBM as a biosensor (detecting K+) was given.
Resumo:
Two novel organic-inorganic hybrid complexes [(CuX)(2)(o-phen)](infinity) (X = Br (1), Cl (2); o-phen = o-phenanthroline) have been synthesized hydrothermally and characterized structurally by elemental analyses, IR, ESR, XPS spectrum, TG analyses and single-crystal X-ray diffraction. Both title compounds exhibit novel one-dimensional chainlike copper halide scaffolding constructed by the unusual [Cu3X3] hexagon motifs by sharing opposite edges, where a single Cu site of each [Cu3X3] hexagon is chelated with N donors of o-phen group. To our knowledge, such basic o-phen-copper halide skeleton has not been reported hitherto. Moreover, TG analyses indicate that both title compounds possess high thermal stability.
Resumo:
A new compound, (C6H6N3)(7)((PMo12O40)-O-m)(PMo(v)Mo(11)(m)O40) (.) 2CH(3)CH(2)OH (.) 5H(2)O, was synthesized and characterized by means of elemental analyses, IR spectroscopy, H-1 NMR spectroscopy and single crystal X-ray diffraction. This is the first example of benzotriazole-polyoxometalates species. The compound crystallized in a triclinic space group P (1) over bar with a = 1. 8378 (4) nm. b = 1. 9078 (4) nm. c = 2.1037 (4) nm. alpha = 63.41 (3)degrees. beta = 64.31 (3)degrees. gamma = 68.38 (3)degrees. V = 5.803 (2) nm(3). Z = 2. R-1 = 0.0486, wR(2) = 0.1357. The X-ray crystallographic study showed that the crystal structure was constructed by electrostatic interactions and hydrogen bonds between dodecamolybdophosphorate anions and protonated benzotriazole cations. The electrochemical behavior and the reduction of nitrite and hydrogen peroxide clectrocatalyzed by the title compound were studied.
Resumo:
In this paper, silica-based transparent organic-inorganic hybrid materials were prepared via the sol-gel process. Tetraethoxysilane (TEOS) and 3-glycidoxypropyltrimethoxysilane (GPTMS) were used as the inorganic and organic precursors, respectively. The terbium complex, Tb(Tfacac)(3)phen (Tfacac = 1,1,1-trifluoroacetylacetone, phen = 1, 10-phenanthroline) was successfully doped into organically modified silicate (ormosil) matrix derived from TEOS and GPTMS, and the luminescent properties of the resultant ormosil composite phosphors [ormosil/Th(Tfacac)(3)phen] were investigated compared with those of the Tb(Tfacac)(3)phen incorporated into SiO2 derived from TEOS (labeled as silica/Tb(Tfacac)(3)phen). Both kinds of the materials show the characteristic green emission of Tb3+ ion. The luminescence behavior of the resultant composite products was dependent on the matrix composition. The optimized lanthanide complex concentration in the ormosil/Tb(Tfacac)(3)phen was increased compared with in silica/Tb(Tfacac)(3)phen. Furthermore, the lifetime of Tb3+ in Tb(Tfacac)(3)phen, silica/Tb(Tfacac)(3)phen and ormosil/Tb(Tfacac)(3)phen follows the sequence: onmosil/Tb(Tfacac)(3)phen>silica/Tb(Tfacac)(3)phen>pure Tb(Tfacac)(3)phen.
Resumo:
A novel hybrid photochromic composite film composed of Preyssler's heteropoly acid H-12[EuP5W30O110] (EuP5W30) and polyvinylpyrrolidone (PVP) was prepared by dip-coating method. Atomic force microscopy (AFM) was used to investigate the surface topography. The change of characteristic peak in the infrared spectra (IR) was investigated. The TG curve showed three steps of weight loss and approximately revealed the composition of the hybrid film. Ultraviolet-visible adsorption spectra (UV-VIS) and electron resonance spectrum (ESR) were used to investigate the photochromic behavior and mechanism of hybrid film. The photoluminescent behavior of the film at room temperature was investigated to show the characteristic Eu3+ emission pattern of D-5(o)-F-7(J). The occurrence of photoluminescent activity confirms the potential for creating luminescent thin film with polyoxometalates (POMs).
Resumo:
Through layer-by-layer method [tetrakis(N-methylpyridyl)porphyrinato] cobalt (CoTMPyP) and polyoxometalyte were alternately deposited on 4-aminobenzoic acid (4-ABA) modified glassy carbon electrode. The resulting organic-inorganic hybrid films were characterized by cyclic voltammetry (CV), UV/visible absorption spectroscopy, and atomic force microscopy (AFM). It was proved that the multilayer films are uniform and stable. CoTMPyP-containing multilayer films exhibit remarkable electrocatalytic activity for the reduction of O-2. Rotating disk electrode (RDE) voltammetry and rotating ring-disk electrode (RRDE) voltammetry confirm that P2W18/CoTMPyP multilayer films can catalyze the four-electron almost reduction of O-2 to water in pH > 4.0 buffer solution, while SiW12/CoTMPyP multilayer films catalyze about two-electron reduction of O-2 to H2O2 in pH 1 - 6 buffer solutions. The kinetic constants for O-2 reduction were comparatively investigated at P2W18/CoTMPyP and SiW12/CoTMPyP multilayer films electrodes.
Resumo:
Luminescent hybrid thin films consisting of terbium complex covalently bonded to a silica-based network have been obtained in situ via a sol-gel approach. A new monomer, N-(4-benzoic acid-yl), N'-(propylthiethoxysilyl)urea (PABI), has been synthesized by grafting isocyanatopropyltriethoxysilane (ICPTES) to p-aminobenzoic acid and characterized by H-1 NMR IR and MS, The monomer acts as a ligand for Tb3+ ion and as a sol-gel precursor. Band emission front Tb3+ ion due to an efficient ligand-to-metal energy transfer was observed by UV excitation. The decay curves of Tb3+ in the hybrid films were measured. The energy difference between the triplet state energy of PABI and the D-5(4) level of Tb3+ ion falls in the exciting range to sensitize Tb3+ ion fluorescence.
Resumo:
In situ synthesis of terbium carboxyl complexes in an organic-inorganic hybrid matrix by a sol-gel process has been proposed. The formation of terbium carboxyl complexes in the hybrid matrix is confirmed by the luminescence spectra and IR spectra. It is observed that the location at the amino group in aminobenzoic acid has a large effect on the luminescence properties and lifetimes. Furthermore, the emission intensity decreases with increasing temperature.