425 resultados para B-192


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Self-assembled InAs quantum dots (QDs) in InAlAs grown on (001) and (311)B InP substrates by molecular beam epitaxy (MBE) have been comparatively investigated. A correlated study of atomic force microscopy (AFM) and photoluminescence (PL) disclosed that InAs QDs grown on high-index InP substrates can lead to high density and uniformity. By introducing a lattice-matched InAlGaAs overlayer on InAlAs buffer, still more dense and uniform InAs QDs were obtained in comparison with InAs QDs formed with only InAlAs matrix. Moreover, two-dimensional well-ordered InAs dots with regular shape grown on (311)B InP substrates are reported for the first time. We explained this exceptional phenomenon from strain energy combined with kinetics point of view. (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydrogenated amorphous silicon films co-doped with oxygen (O), boron (B) and phosphorus (P) were fabricated using PECVD technique. The erbium (Er) implanted samples were annealed in a N-2 ambient by rapid thermal annealing. Strong photoluminescence (PL) spectra of these samples were observed at room temperature. The incorporation of O, B and P could not only enhance the PL intensity but also the thermal annealing temperature of the strongest PL intensity. It seems that the incorporation of B or P can decrease the grain boundary potential barriers thus leading to an easier movement of carriers and a stronger PL intensity. Temperature dependence of PL indicated the thermal quenching of Er-doped hydrogenated amorphous silicon is very weak.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we investigated the self-assembled quantum dots formed on (100) and (N11)B (N = 2, 3, 4, 5) InP substrates by molecular beam epitaxy (MBE). Two kinds of ternary QDs (In0.9Ga0.1As and In0.9Al0.1As QDs) are grown on the above substrates; Transmission electron microscopy (TEM) and photoluminescence (PL) results confirm QDs formation for all samples. The PL spectra reveal obvious differences in integral luminescence, peak position, full-width at half-maximum and peak shape between different oriented surfaces. Highest PL integral intensity is observed from QDs on (411)B surfaces, which shows a potential for improving the optical properties of QDs by using high-index surface. (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The increased emphasis on sub-micron CMOS/SOS devices has placed a demand for high quality thin silicon on sapphire (SOS) films with thickness of the order 100-200 nm. It is demonstrated that the crystalline quality of as-grown thin SOS films by the CVD method can be greatly improved by solid phase epitaxy (SPE) process: implantation of self-silicon ions and subsequent thermal annealing. Subsequent regrowth of this amorphous layer leads to a greater improvement in silicon layer crystallinity and channel carrier mobility, evidenced, respectively, by double crystal X-ray diffraction and electrical measurements. We concluded that the thin SPE SOS films are suitable for application to high-performance CMOS circuitry. (C) 2000 Elsevier Science S.A. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The deposition of InxGa1-xAs (0.2 less than or equal to x less than or equal to 0.5) on (311)B GaAs surfaces using solid source molecular beam epitaxy (MBE) has been studied. Both AFM and photoluminescence emission showed that homogeneous quantum dots could be formed on (311)B GaAs surface when indium composition was around 0.4. Indium composition had a strong influence on the size uniformity and the lateral alignment of quantum dots. Compared with other surface orientation, (100) and (n11) A/B (n=1,2,3), photoluminescence measurement confirmed that (311)B surface is the most advantageous in fabricating uniform and dense quantum dots.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two-dimensional (2D) ordering of self-assembled InxGa1-xAs quantum dots (QDs) fabricated on GaAs(311)B surface by molecular beam epitaxy (MBE) are reported. The QDs are aligned into rows deferring from the direction of the misorientation of the substrate, and strongly dependent on the mole In content x of InxGa1-xAs solid solution. The ordering alignment deteriorates significantly as the In content is increased to above 0.5. The 2D ordering can be described as a centered rectangular unit mesh with the two sides parallel to [01 (1) over bar] and [(2) over bar 33], respectively. Their relative arrangement seems to be determined by a combination of the strongly repulsive elastic interaction between neighbouring islands and the minimization of the strain energy of the whole system. The ordering also helps to improve the size homogeneity of the InGaAs islands. Photoluminescence (PL) result demonstrates that QDs grown on (311)B have the narrowest linewidth and the strongest integrated intensity, compared to those grown on (100) and other high-index planes under the same condition. (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The two-dimensional (2D) ordering of self-assembled InxGa1-xAs quantum dots (QDs) fabricated on GaAs(3 1 1)B surface by molecular beam epitaxy (MBE) are reported. The QDs are aligned into rows differing from the direction of the misorientation of the substrate, and strongly dependent on the mole In content x of InxGa1-As-x solid solution. The ordering alignment deteriorates significantly as the In content is increased to above 0.5. The 2D ordering can be described as a centered rectangular unit mesh with the two sides parallel to [0 1 (1) over bar] and [(2) over bar 3 3], respectively. Their relative arrangement seems to be determined by a combination of the strongly repulsive elastic interaction between the neighboring islands and the minimization of the strain energy of the whole system. The ordering also helps to improve the size homogeneity of the InGaAs islands. The photoluminescence (PL) result demonstrates that QDs grown on (3 1 1)B have the narrowest linewidth and the strongest integrated intensity, compared to those on (1 0 0) and other high-index planes under the same condition. (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Self-assembled InxGa1-xAs quantum dots (QDs) on (311)A/B GaAs surfaces have been grown by molecular beam epitaxy (MBE). Spontaneously ordering alignment of InxGa1-xAs with lower In content around 0.3 have been observed. The direction of alignment orientation of the QDs formation differs from the direction of misorientation of the (311)B surface, and is strongly dependent upon the In content x. The ordering alignment become significantly deteriorated as the In content is increased to above 0.5 or as the QDs are formed on (100) or (311)A substrates. (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sm3Fe26.7V2.3N4 nitrides and Sm3Fe26.7V2.3Cy carbides have been synthesized by gas-solid phase reaction. Their hard magnetic properties have been investigated by means of additional ball-milling at room temperature. The saturation magnetization of Sm3Fe26.7V2.3N4 almost decreases linearly with increasing ball-milling time t, but that of Sm3Fe26.7V2.3Cy has no obvious change when the ball-milling time increases from t = 1 to 28 h. As a preliminary result, the maximum remanence B-r of 0.94 and 0.88 T, the coercivity mu(0i)H(C) of 0.75 and 0.25 T, and the maximum energy product (BH) of 108.5 and 39.1 kJ/m(3) for their resin-bonded permanent magnets are achieved, respectively, by ball-milling at 293 K. (C) 1999 Published by Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Atomic force microscopy (AFM) measurements of nanometer-sized islands formed by 2 monolayers of InAs by molecular beam epitaxy have been carried out and the scan line of individual islands was extracted from raw AFM data for investigation. It is found that the base widths of nanometer-sized islands obtained by AFM are not reliable due to the finite size and shape of the contacting probe. A simple model is proposed to analyze the deviation of the measured value From the real value of the base width of InAs islands. (C) 1998 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is believed that the highly dislocated region near the GaN/sapphire interface is a degenerate layer. In this paper a direct evidence for such a proposal is presented. By inserting a buried AlxGa1-xN (x > 0.5) isolating layer to separate the interface region from the bulk region, the background electron concentration can be significantly reduced, while care must be taken to guarantee that there is no degrading of Hall mobility when choosing the thickness of the isolating layer. (C) 1998 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using NH3 cracked on the growing surface as the nitrogen precursor, an AlGaN/GaN modulation-doped (MD) heterostructure without a buffer layer was grown on a nitridated sapphire substrate in a home-made molecular beam epitaxy (MBE) system. Though the Al composition is as low as 0.036, as deduced from photoluminescence (PL) measurements, the AlGaN barrier layer can be an efficient carrier supplier for the formation of a two-dimensional electron gas (2DEG) at the heterointerface. The 2DEG characteristics are verified by the variable temperature Hall measurements down to 7 K. Using a parallel conduction model, we estimate the actual mobility of the 2DEG to be 1100 cm(2)/V s as the sheet carrier density to be 1.0 x 10(12) cm(-2). Our results show that the AlGaN/GaN system is very suitable for the fabrication of high electron mobility transistors (HEMTs). (C) 1998 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of growth interruption on the InAs deposition and its subsequent growth as self-assembled island structures, in particular the material transport process of the InAs layers has been investigated by photoluminescence and transmission electron microscopy measurements. InAs material in structures with only coherent islands transfers from the wetting layer to the formed islands and the growth interruption causes a red shift of PL peak energy. On the other hand, the PL peak shifts to higher energy in structures containing simultaneously coherent and noncoherent islands with dislocations. In this case, the noncoherent islands capture InAs material from the surrounding wetting layer as well as coherent islands, which casues a reduction in the size of these islands. The variations in the PL intensity and line width are also discussed. (C) 1998 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Photoluminescence (PL) investigation was carried out on GaInP/GaAs multiple quantum wells structures grown on (001) and (311) B surfaces of GaAs by gas source molecular beam epitaxy. Superlattice structures of GaAs/GaInP grown on (001) GaAs substrate were also studied in comparison. Deep-level luminescence was seen to dominate the PL spectra from the quantum wells and superlattice structures that were grown on (001) GaAs substrate. In contrast, superior optical properties were exhibited in the same structures grown on (311) B GaAs surfaces. The results suggested that GaAs/GaInP quantum well structures on (311) B oriented substrates could efficiently suppress the deep-level emissions, result in narrower PL peaks indicating smooth interfaces. (C) 1998 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tandem amorphous silicon solar cells have attracted extensive interest because of better performance than single junction counterpart. As n/p junctions play an important role in the current transportation of tandem solar cells, it is important to design and fabricate good n/p junctions.The properties of the n/p junction of amorphous silicon (a-Si) were studied. We investigate the effect of interposing a nanocrystalline p(+) layer between n (top cell) and p (bottom cell) layers of a tandem solar cell. The crystalline volume fraction, the band gap, the conductivity and the grain size of the nanocrystalline silicon (nc-Si) p(+) layer could be modulated by changing the deposition parameters.Current transport in a-Si based n/p ("tunnel") junctions was investigated by current-voltage measurements. The voltage dependence on the resistance (V/J) of the tandem cells was examined to see if n/p junction was ohmic contact. To study the affection of different doping concentration to the properties of the nc-Si p(+) layers which varied the properties of the tunnel junctions, three nc-Si p(+) film samples were grown, measured and analyzed.