312 resultados para spin tunneling
Resumo:
A new material structure with Al0.22Ga0.78As/In0.15Ga0.85As/GaAs emitter spacer layer and GaAs/In0.15Ga0.85As/GaAs well for resonant tunneling diodes is designed and the corresponding device is fabricated. RTDs DC characteristics are measured at room temperature. Peak-to-valley current ratio (PVCR) is 7.44 for RTD Analysis on these results suggests that the material structure will be helpful to improve the quality, of RTD.
Resumo:
The beating patterns in the Shubnikov-de Haas oscillatory magnetoresistance originating from zero-field spin splitting of two-dimensional electron gases (2DEGs) in In0.52Al0.48As/InxGa1-xAs/In0.52Al0.48As quantum wells with silicon delta doped on the upper barrier layer have been investigated by means of magnetotransport measurements before and after illumination. Contrary to the expectation, after each illumination, the beating nodes induced by the zero-field spin-splitting effect shift to lower and lower magnetic field due to the decrease in the zero-field spin-splitting energy of the 2DEGs. The anomalous phenomenon of the shift of the beating nodes and the decrease in spin-orbit coupling constants after illumination cannot be explained by utilizing the previous linear Rashba model. It is suggested that the decrease in the zero-field spin-splitting energy and the spin-orbit coupling constant arise from the nonlinear Rashba spin splitting.
Resumo:
The asymmetric spin distribution in k space caused by the pure spin current (PSC) can introduce a photoexcited charge current (PECC). This provides us a practical scheme for direct detection of PSC. We demonstrate theoretically that the PECC related to the PSC depends sensitively on the wave vector and spin orientation of the carriers, more important, the helicity dependence of this PECC provides us a way to refine it from the helicity independent background current by tuning the polarized laser beams from left to right circular polarization.
Resumo:
The authors demonstrate that the Rashba spin-orbit interaction in low-dimensional semiconductors can enhance or reduce the electron-phonon scattering rate by as much as 25%. The underlying mechanism is that the electron-phonon scattering phase space for the upper (lower) Rashba band is significantly enhanced (suppressed) by the spin-orbit interaction. While the scattering time decreases for the upper level, the mobility of the level increases due to an additional term in the electron velocity. (C) 2007 American Institute of Physics.
Resumo:
Real-time detection of single electron tunneling through a T-shaped double quantum dot is simulated, based on a Monte Carlo scheme. The double dot is embedded in a dissipative environment and the presence of electrons on the double dot is detected with a nearby quantum point contact. We demonstrate directly the bunching behavior in electron transport, which leads eventually to a super-Poissonian noise. Particularly, in the context of full counting statistics, we investigate the essential difference between the dephasing mechanisms induced by the quantum point contact detection and the coupling to the external phonon bath. A number of intriguing noise features associated with various transport mechanisms are revealed.
Resumo:
The size and distribution of surface features of porous silicon layers have been investigated by scanning tunneling and atomic force microscopy. Pores and hillocks down to 1-2 nm size were observed, with their shape and distribution on the sample surface being influenced by crystallographic effects. The local density of electronic states show a strong increase above 2 eV, in agreement with recent theoretical predictions.
Resumo:
By using the envelope function method we calculated the tunneling escape time of electrons from a quantum well. We adopted a simplified interface matrix to describe the GAMMA-X mixing effect, and employed a wave packet method to determine the tunneling escape time. When the GAMMA state in the well was in resonance with the X state in the barrier, the escape time reduced remarkably. However, it was possible that the wave functions in two different channels, i.e., GAMMA-GAMMA-GAMMA and GAMMA-X-GAMMA, could interfere destructively, leading the escape time greater than that of pure GAMMA-GAMMA-GAMMA tunneling.
Resumo:
We have studied the sequential tunneling of doped weakly coupled GaAs/ALAs superlattices (SLs), whose ground state of the X valley in AlAS layers is designed to be located between the ground state (E(GAMMA1)) and the first excited state (E(GAMMA2)) of the GAMMA valley in GaAs wells. The experimental results demonstrate that the high electric field domain in these SLs is attributed to the GAMMA-X sequential tunneling instead of the usual sequential resonant tunneling between subbands in adjacent wells. Within this kind of high field domain, electrons from the ground state in the GaAs well tunnel to the ground state of the X valley in the nearest AlAs layer, then through very rapid real-space transfer relax from the X valley in the AlAs layer to the ground state of the GAMMA valley of the next GaAs well.
Resumo:
Taking the inhomogenous broadening of the electron energy levels into account, a coherent model of the resonant tunneling (RT) of electrons in double quantum wells is presented. The validity of the model is confirmed with the experiments [M. Nido et al., Proc. SPIE 1268, 177 (1990)], and shows that the tunneling process can be explained by the simple coherent theory even in the presence of the carrier scattering. We have discussed the dependence of resonant tunneling on the barrier thickness L(B) by introducing the contrast ratio LAMBDA and the full width at half depth of the RT valley, and found that LAMBDA first increases with increasing barrier thickness, reaches a maximum, and then decreases with a further increase of L(B), in striking contrast to the Fabry-Perot model where a monotonic increase of the peak-to-valley ratio is predicted. We attribute the reduction of LAMBDA with large L(B) to the energy broadening resulting from the carrier scattering. A monotonic decrease of the full width at half depth of the RT valley with an increase of L(R) is also found.
Resumo:
By using a transfer-matrix method on the basis of two-dimensional (2D) Bloch sums in accordance with a tight-binding scheme, a self-consistent calculation on the resonant tunneling in asymmetric double-barrier structures is presented, in which contributions to resonant tunneling from both three-dimensional (3D) electrons in the contacts and 2D electrons in the spacer or accumulation layers are considered simultaneously. The charge buildup effect on the current versus voltage (I-V) curves is evaluated systematically, showing quantitatively how it results in the I-V bistability and enhanced differences between I-V curves for positive and negative bias in an asymmetric double-barrier structure. Special attention is focused on the interaction between 3D-2D and 2D-2D resonant-tunneling processes, including the suppression of 2D-2D resonant tunneling by the charge buildup in the well accompanying the 3D-2D resonant tunneling. The effects of the emitter doping condition (doping concentration, spacer thickness) on the presence of two types of quasi-2D levels in the emitter accumulation layers, and on the formation of a potential bulge in the emitter region, are discussed in detail in relation to the tunneling process.
Resumo:
A two-dimensional atomic scattering theory is developed for scattering of electrons by a circularly symmetric quantum structure in the two-dimensional electron gas. It is found that the scattering cross section oscillates as a function of ka where k is the electron wave vector and a is the radius of the cylindrical potential barrier. If there is a quantum well inside the potential barrier, there appears a series of sharp resonant-tunneling peaks superposed on the original scattering-cross-section curves. The width of the resonant-tunneling peak depends sensitively on the thickness, the height of the potential barrier, and the electron energy.