169 resultados para plasma-polymers
Resumo:
We study the structural defects in the SiOx film prepared by electron cyclotron resonance plasma chemical vapour deposition and annealing recovery evolution. The photoluminescence property is observed in the as-deposited and annealed samples. [-SiO3](2-) defects are the luminescence centres of the ultraviolet photoluminescence (PL) from the Fourier transform infrared spectroscopy and PL measurements. [-SiO3](2-) is observed by positron annihilation spectroscopy, and this defect can make the S parameters increase. After 1000 degrees C annealing, [-SiO3](2-) defects still exist in the films.
Resumo:
We studied the effects of hydrogen plasma treatment on the electrical and optical properties of ZnO films deposited by radio frequency magnetron sputtering. It is found that the ZnO H film is highly transparent with the average transmittance of 92% in the visible range. Both carrier concentration and mobility are increased after hydrogen plasma treatment, correspondingly, the resistivity of the ZnO H films achieves the order of 10(-3) cm. We suggest that the incorporated hydrogen not only passivates most of the defects and/or acceptors present, but also introduces shallow donor states such as the V-O-H complex and the interstitial hydrogen H-i. Moreover, the annealing data indicate that H-i is unstable in ZnO, while the V-O-H complex remains stable on the whole at 400 degrees C, and the latter diffuses out when the annealing temperature increases to 500 degrees C. These results make ZnO H more attractive for future applications as transparent conducting electrodes.
Resumo:
The ZnO films deposited by magnetron sputtering were treated by H/O plasma. It is found that the field emission (FE) characteristics of the ZnO film are considerably improved after H-plasma treatment and slightly deteriorated after O-plasma treatment. The improvement of FE characteristics is attributed to the reduced work function and the increased conductivity of the ZnO H films. Conductive atomic force microscopy was employed to investigate the effect of the plasma treatment on the nanoscale conductivity of ZnO, these findings correlate well with the FE data and facilitate a clearer description of electron emission from the ZnO H films.
Resumo:
The authors developed an inductively coupled plasma etching process for the fabrication of hole-type photonic crystals in InP. The etching was performed at 70 degrees C using BCl3/Cl-2 chemistries. A high etch rate of 1.4 mu m/min was obtained for 200 nm diameter holes. The process also yields nearly cylindrical hole shape with a 10.8 aspect ratio and more than 85 degrees straightness of the smooth sidewall. Surface-emitting photonic crystal laser and edge emitting one were demonstrated in the experiments.