207 resultados para dual fuel
Resumo:
The solid electrolytes, BaCe(0.8)Ln(0.2)O(2.9) (Ln: Gd, Sm, Eu), were prepared by the sol-gel method. XRD indicated that a pure orthorhombic phase was formed at 900 degrees C. The synthesis temperature by the sol-gel method was about 600 degrees C: lower than the high temperature solid phase reaction method. The electrical conductivity and impedance spectra were measured and the conduction mechanism was studied. The grain-boundary resistance of the solid electrolyte could be reduced or eliminated by the sol-gel method. The conductivity of BaCe0.8Gd0.2O2.9 is 7.87 x 10(-2) S.cm(-1) at 800 degrees C. The open-circuit voltage of hydrogen-oxygen fuel cell using BaCe0.8Gd0.2O2.9 as electrolyte was near to 1 V and its maximum power density was 30 mW.cm(-2).
Resumo:
A reversed-phase high-performance liquid chromatography with series dual glassy carbon electrodes for the amperometric detection of water-soluble menadione is described. The complex post-column derivatization reaction and the high background currents were avoided. The menadione sodium bisulfite was reduced at -0.3 V vs. SCE at the upstream (generator) electrode and oxidized at +0.2V vs. SCE at the downstream (collector) electrode. The mobile phase was 0.2moll(-1) HAc-NaAc aqueous buffer (pH 5.50) and 40% (v/v) methanol. The linear response was in the range of 35 ng to 15 mu g, with a detection Limit of 15 ng (S/N=3). The correlation coefficient was 0.9997 (n=6). The electrochemical detection with series dual electrodes has a higher selectivity for menadione (vitamin K-3) compound than with UV detection.
Resumo:
A novel wall-jet cell with parallel dual cylinder (PDC) microelectrodes was constructed and used for flow injection analysis (FLA). The detector takes the advantages of ''redox recycling'' between bipotentiostated microcylinder electrodes (- 0.4 V/SCE an
Resumo:
Proteins of the DYRK (dual-specificity tyrosine-phosphorylation-regulated kinase) family are characterized by the presence of a conserved kinase domain and N-terminal DH box. DYRK2 is involved in regulating key developmental and cellular processes, such as neurogenesis, cell proliferation, cytokinesis, and cellular differentiation. Herein, we report that the ortholog of DYRK2 found in zebrafish shares about 70% identity with that of human, mouse, and chick. RT-PCR showed that DYRK2 is expressed maternally and zygotically. In-situ hybridization results show that DYRK2 is expressed in somite cells that will develop into muscles. Our results provide preliminary evidence for investigating the in-vivo function of DYRK2 in zebrafish muscle development.
Resumo:
The pyrolytic and kinetic characteristics of Enteromorpha prolifera from the Yellow Sea were evaluated at heating rates of 10, 20 and 50 degrees C min(-1), respectively. The results indicated that three stages appeared during pyrolysis; dehydration, primary devolatilization and residual decomposition. Differences in the heating rates resulted in considerable differences in the pyrolysis of E. prolifera. Specifically, the increase of heating rates resulted in shifting of the initial temperature, peak temperature and the maximum weight loss to a higher value. The average activation energy of E. prolifera was 228.1 kJ mol(-1), the pre-exponential factors ranged from 49.93 to 63.29 and the reaction orders ranged from 2.2 to 3.7. In addition, there were kinetic compensation effects between the pre-exponential factors and the activation energy. Finally, the minimum activation energy was obtained when a heating rate of 20 degrees C min(-1) was used. (C) 2009 The Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.
Resumo:
A new ocean wave and sea surface current monitoring system with horizontally-(HH) and vertically-(VV) polarized X-band radar was developed. Two experiments into the use of the radar system were carried out at two sites, respectively, for calibration process in Zhangzi Island of the Yellow Sea, and for validation in the Yellow Sea and South China Sea. Ocean wave parameters and sea surface current velocities were retrieved from the dual polarized radar image sequences based on an inverse method. The results obtained from dual-polarized radar data sets acquired in Zhangzi Island are compared with those from an ocean directional buoy. The results show that ocean wave parameters and sea surface current velocities retrieved from radar image sets are in a good agreement with those observed by the buoy. In particular, it has been found that the vertically-polarized radar is better than the horizontally-polarized radar in retrieving ocean wave parameters, especially in detecting the significant wave height below 1.0 m.
Resumo:
The micro-pore configurations on the matrix surface were studied by SEM. The matrix of molten carbonate fuel cell (MCFC) performance was also improved by the better coordination between the reasonable radius of the micro-pores and the higher porosity of the cell matrix. The many and complicated micro-pore configurations in the cell matrix promoted the volatilization of the organic additives and the burn of polyvinyl butyral (PVB). The smooth volatilization of the organic additives and the complete burn of PVB were the significant factors for the improved MCFC performance. Oxygen diffusion controlled-burn mechanism of PVB in the cell matrix was proposed. (C) 2002 Published by Elsevier Science Ltd.
Resumo:
A supported lanthanum gallate (LSGM) electrolyte thin-film solid oxide fuel cell with Ni-YSZ cermet anode and strontium-doped lanthanum manganite (LSM)-yttria stabilized zirconia (YSZ) composite cathode was, for the first time, fabricated and tested. The cell was prepared by an unconventional approach, in which an LSGM thin film (about 15 mum thick) was first deposited on a porous substrate such as a porous YSZ disk by a wet process and sintered at a high temperature (above 1400degrees C). NiO was then incorporated into the porous substrate by a carefully controlled impregnation process and fired at a much lower temperature. In this way, the severe reaction between LSGM and NiO at a high temperature, which is required for the full densification of LSGM film, can be avoided. A strontium-doped LaMnO3 (LSM)-YSZ composite cathode was screen printed on the surface of the LSGM film and then fired at 1250degrees C. The electrolyte resistances of the SOFC single cells fabricated by this approach are much lower compared to those of thick LSGM film supported cells. A maximum output power density of over 0.85 W/cm(2) at 800degreesC with H-2 as fuel and air as oxidant for a fabricated cell was achieved. (C) 2002 The Electrochemical Society.
Resumo:
Direct methanol fuel cells (DMFCs) consisting of multi-layer electrodes provide higher performance than those with the traditional electrode. The new electrode structure includes a hydrophilic thin film and a traditional catalyst layer. A decal transfer method was used to apply the thin film to the Nafion(R) membrane. Results show that the performance of a cell with the hydrophilic thin film is obviously enhanced. A cell with the optimal thin film electrode structure operating at I M CH3OH, 2 atm oxygen and 90degreesC yields a current density of 100 mA/cm(2) at 0.53 V cell voltage. The peak power density is 120 mW/cm(2). The performance stability of a cell in a short-term life operation was also increased when the hydrophilic thin film was employed. (C) 2002 Elsevier Science B.V. All rights reserved.