276 resultados para Transition de fécondité


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A reversibly tunable colloidal photonic crystal between two stop bands was realized by a liquid-solid phase transition of liquid infiltrated into the air voids of silica opals. The difference of the peak wavelengths of the two stop bands was dependent on the diameter of the silica opals and the difference of the refractive index of the filled solvent between the solid and liquid state. The reversibly tunable photonic crystals have good stability and reproducibility.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of reactor blends of linear and branched polyethylenes have been prepared, in the presence of modified methylaluminoxane, using a combination of 2,6-bis[1(2,6-dimethyphenylimino) pyridyl]-cobalt(II) dichloride (1), known as an active catalyst for producing linear polyethylene, and [1,4-bis(2,6-diidopropylphenyl)] acenaphthene diimine nickel(II) dibromide (2), which is active for the production of branched polyethylene. The polymerizations were performed at various levels of catalyst feed ratio at 10 bar. The linear correlation between catalyst activity and concentration of catalyst 2 suggested that the catalysts performed independently from each other. The weight-average molecular weights ((M) over bar (w)), crystalline structures, and phase structures of the blends were investigated, using a combination of gel permeation chromatography, differential scanning calorimetry, wide-angle X-ray diffraction, and small angle X-ray scattering techniques. It was found that the polymerization activities and MWs and crystallization rate of the polymers took decreasing tendency with the increase of the catalyst 2 ratios, while melting temperatures (T-m), crystalline temperatures (T,), and crystalline degrees took decreasing tendency. Long period was distinctly influenced by the amorphous component concentration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The gelation of physically associating triblock copolymers in a good solvent was investigated by means of the Monte Carlo simulation and a gelation process based on the conformation transition of the copolymer that was described in detail. In our simulative system, it has been found that the gelation is closely related with chain conformations, and there exist four types of chains defined as free, dangling, loop, and bridge conformations. The copolymer chains with different conformations contribute to the formation of gel in different ways. We proposed a conformational transition model, by which we evaluated the role of these four types of chains in sol-gel transition. It was concluded that the free chains keeping the conformation transition equilibrium and the dangling conformation being the hinge of conformation transition, while the chain with loop conformation enlarges the size of the congeries and the chain with bridge conformations binds the congeries consisted of the copolymer chains. In addition, the effects of temperature and concentration on the physical gelation, the association of the copolymer congeries, and the copolymer chain conformations' distribution were discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of branched poly(ethyleneimine) (PEI) derived polymers with different lengths of n-alkyl side chains, denoted as PEI(n)Cs (n = 12, 14, 16, 18, 20, number of carbon atoms in alkyl side group), have been prepared by a N-alkylation method, and systematically characterized by differential scanning calorimertry (DSC) and wide-angle X-ray diffraction (WARD) as well as Fourier transform infrared spectroscopy (FTIR). The side chains grafted on these comblike polymers are long enough to form crystalline phase composed of paraffin-like crystallites. The crystallization of the side chains forces the branched poly(ethyleneimine) molecules to pack into layered structure, between which the crystallites are located. The melting temperatures of the side chain crystallites increase from -12.36 to +51.49 degreesC with increasing the length of the side chains from n. = 12 to n = 20, which are a little bit lower than the corresponding pristine n-alkanes. PEI18C was taken as an example in this work for the investigation of phase transition and conformational variation of the side chains with temperature changing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Equilibrium geometries, vibrational frequencies and dissociation energies of the second row transition metal dimers (from Y-2 to Cd-2 except Tc-2) ere studied by use of density functional methods B3LYP, BLYP, B3PW91, BHLYP, BP86, B3P86, SVWN, MPW1PW91 and PBE1PBE. The accuracy DFT methods is found to be highly dependent on the functional employed, in particular for vibrational frequency and dissociation energy. In most cases, the predicted bond distance is in general agreement with experiment and previous theoretical results. For van der Waals dimer Cd-2, B3LYP and BLYP have excellent performance in predicting the bond distance. For Ag-2, all density functional methods used in this study perform well in producing the bond distance, vibrational frequency and dissociation energy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ground state geometries were searched for transition metal trimers Sc-3, Y-3, La-3, Lu-3, Ti-3, Zr-3, and Hf-3 by density functional methods. For all the studied trimers, our calculation indicates that the ground state geometries are either equilateral triangle (Zr-3 and Hf-3) or near equilateral triangle (Ti-3, Sc-3, Y-3, La-3, and Lu-3). For rare earth trimers Sc-3, Y-3, La-3, and Lu-3, isosceles triangle (near equilateral triangle) at quartet state is the ground state. Isosceles triangle at doublet state is the competitive candidate for the ground state. For Zr-3 and Hf-3, equilateral triangle at singlet state is the most stable. For Ti-3, isosceles triangle (near equilateral triangle) at quintet state gives the ground state. For Sc-3, Zr-3, and Hf-3, where experimental results are available, the predicted geometries are in agreement with experiment in which the ground state is equilateral triangle (Zr-3) or fluxional (Sc-3 and Hf-3). For Y-3, the calculated geometry is in agreement with experimental observation and previous theoretical study that Y-3 is a bent molecule for the ground state.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It was theoretically pointed out that the product of the yield stress and yield strain of matrix polymer that determined the brittle-ductile transition (BDT) of particle toughened polymers. For given particle and test condition, the higher the product of the yield stress and the yield strain of the matrix polymer, the smaller the critical interparticle distance (IDc) of the blends was. This was why the IDc (0.15 mum) of the polypropylene (PP)/rubber blends was smaller than that (0.30 mum) of the nylon 66/rubber blends, and the IDc of the nylon 66/rubber blends was smaller than that (0.60 mum) of the high density polyethylene (HDPE)/rubber blends.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To study the brittle-ductile transition (BDT) of polypropylene (PP)/ethylene-propylene-diene monomer (EPDM) blends induced by size, temperature, and time, the toughness of the PP/EPDM blends was investigated over wide ranges of EPDM content, temperature, and strain rate. The toughness of the blends was determined from the tensile fracture energy of the side-edge notched samples. The concept of interparticle distance (ID) was introduced into this study to probe the size effect on the BDT of PP/EPDM blends, whereas the effect of time corresponded to that of strain rate. The BDT induced by size, temperature, and time was observed in the fracture energy versus ID, temperature, and strain rate. The critical BDT temperatures for various EPDM contents at different initial strain rates were obtained from these transitions. The critical interparticle distance (IDc) increased nonlinearly with increasing temperature, and when the initial strain rate was lower, the IDc was larger. Moreover, the variation of the reciprocal of the initial strain rate with the reciprocal of temperature followed different straight lines for various EPDM contents. These straight lines were with the same slope.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Single-walled carbon nanotubes (SWNTs) have been considered as the leading candidate for nano-device applications ranging from gene therapy and novel drug delivery to membrane separations. The miniaturization of DNA-nanotube devices for biological applications requires fully understanding DNA-nanotube interaction mechanism. We report here, for the first time, that DNA destabilization and conformational transition induced by SWNTs are sequence-dependent. Contrasting changes for SWNTs binding to poly[dGdC]:poly[dGdC] and poly[dAdT]:poly[dAdT] were observed. For GC homopolymer, DNA melting temperature was decreased 40 degrees C by SWNTs but no change for AT-DNA. SWNTs can induce B-A transition for GC-DNA but AT-DNA resisted the transition. Our circular dichroism, competitive binding assay and triplex destabilization studies provide direct evidence that SWNTs induce DNA B-A transition in solution and they bind to the DNA major groove with GC preference.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report here that a cubane-like europium-L-aspartic acid complex at physiological pH can discriminate between DNA structures as judged by the comparison of thermal denaturation, binding stoichiometry, temperature-dependent fluorescence enhancement, and circular dichroism and gel electrophoresis studies. This complex can selectively stabilize non-B-form DNA polydApolydT but destabilize polydGdCpolydGdC and polydAdTpolydAdT. Further studies show that this complex can convert B-form polydGdCpolydGdC to Z-form under the low salt condition at physiological temperature 37 degrees C, and the transition is reversible, similar to RNA polymerase, which turns unwound DNA into Z-DNA and converts it back to B-DNA after transcription. The potential uses of a left-handed helix-selective probe in biology are obvious. Z-DNA is a transient structure and does not exist as a stable feature of the double helix. Therefore, probing this transient structure with a metal-amino acid complex under the low salt condition at physiological temperature would provide insights into their transitions in vivo and are of great interest.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Physical gelation in the concentrated Pluronic F127/D2O solution has been studied by a combination of small-angle neutron scattering (SANS) and Monte Carlo simulation. A 15% F127/D2O solution exhibits a sol-gel transition at low temperature and a gel-sol transition at the higher temperature, as evidenced by SANS and Monte Carlo simulation studies. Our SANS and simulation results also suggest that the sol-gel transition is dominated by the formation of a percolated polymer network, while the gel-sol transition is determined by the loss of bound solvent. Furthermore, different diffusion behaviors of different bound solvents and free solvent are observed. We expect that this approach can be further extended to study phase behaviors of other systems with similar sol-gel phase diagrams.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have investigated the inverted phase formation and the transition from inverted to normal phase for a cylinder-forming polystyrene-block-poly(methyl methacrylate) (PS-b-PMMA) diblock copolymer in solution-cast films with thickness about 300 nm during the process of the solution concentrating by slow solvent evaporation. The cast solvent is 1, 1,2,2-tetrachloroethane (Tetra-CE), a good solvent for both blocks but having preferential affinity for the minority PMMA block. During such solution concentrating process, the phase behavior was examined by freeze-drying the samples at different evaporation time, corresponding to at different block copolymer concentrations, phi. As phi increases from similar to 0.1 % (nu/nu), the phase structure evolved from the disordered sphere phase (DS), consisting of random arranged spheres with the majority PS block as I core and the minority PMMA block as a corona, to ordered inverted phases including inverted spheres (IS), inverted cylinders (IC), and inverted hexagonally perforated lamellae (IHPL) with the minority PMMA block comprising the continuum phase, and then to the lamellar (LAM) phase with alternate layers of the two blocks, and finally to the normal cylinder (NC) phase with the majority PS block comprising the continuum phase. The solvent nature and the copolymer solution concentration are shown to be mainly responsible for the inverted phase formation and the phase transition process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bond distances, vibrational frequencies, electron affinities, ionization potentials, dissociation energies, and dipole moments of the title molecules in neutral, positively, and negatively charged ions were studied using the density functional method. Ground state was assigned for each species. The bonding patterns were analyzed and compared with both the available data and across the series. It was found that besides an ionic component, covalent bonds are formed between the metal s, d orbitals and the silicon 3p orbital. The covalent character increases from ScSi (YSi) to NiSi (PdSi) for 3d (4d) metal monosilicides, then decreases. For 5d metal monosilicides, the covalent character increases from LaSi to OsSi, then decreases. For the dissociation of cations, the dissociation channel depends on the magnitude of the ionization potential between metal and silicon. If the ionization potential of the metal is smaller than that of silicon, channel MSi+-> M++Si is favored. Otherwise, MSi+-> M+Si+ will be favored. A similar behavior was observed for anions, in which the dissociation channel depends on the magnitude of electron affinity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electron affinities and ionization potentials of 4d and 5d transition metal atoms were studied by CCSD(T), MP2 and density functional methods. The calculated results indicate that density functional method B3LYP has the best overall performance in predicting both electron affinity and ionization potential. SVWN gives largest IP and EA for 4d and 5d atoms. For the two basis sets used in this study, LANL2DZ and SDD, the performance of B3LYP/SDD combination is better than B3LYP/LANL2DZ, in particular for electron affinity calculation.