307 resultados para Room-temperature ferromagnetic properties


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The InAsxSb1-x films were grown on (100) GaSb substrates by liquid-phase epitaxy, and their structural, electrical, and optical properties were investigated. The high-resolution x-ray diffraction results reveal that the single crystalline InAsxSb1-x films with a midrange composition are epitaxially grown on the GaSb substrates. Temperature dependence of the Hall mobility was theoretically modeled by considering several predominant scattering mechanisms. The results indicate that ionized impurity and dislocation scatterings dominate at low temperatures, while polar optical phonon scattering is important at room temperature (RT). Furthermore, the InAsxSb1-x films with the higher As composition exhibit the better crystalline quality and the higher mobility. The InAs0.35Sb0.65 film exhibits a Hall mobility of 4.62x10(4) cm(2) V-1 s(-1). The cutoff wavelength of photoresponse is extended to about 12 mu m with a maximum responsivity of 0.21 V/W at RT, showing great potential for RT long-wavelength infrared detection. (C) 2008 American Institute of Physics. [DOI: 10.1063/1.2989116]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tensile-strained GaAsP/GaInP single quantum well (QW) laser diode (I-D) structures have been grown by low-pressure metal organic chemical vapor deposition (LP-MOCVD) and related photoluminescence (PL) properties have been investigated in detail. The samples have the same well thickness of 16 nm but different P compositions in a GaAsP QW. Two peaks in room temperature (RT) PL spectra are observed for samples with a composition larger than 0.10. Temperature and excitation-power-dependent PL spectra have been measured for a sample with it P composition of 0.15. It is found that the two peaks have a 35 meV energy separation independent of temperature and only the low-energy peak exists below 85 K. Additionally, both peak intensities exhibit a monotonous increase as excitation power increases. Analyses indicate that the two peaks arise from the intrinsic-exciton recombination mechanisms of electron-heavy hole (e-hh) and electron-light hole (e-hh). A theoretical calculation based oil model-solid theory, taking, into account the spin-orbit splitting energy, shows good agreement with our experimental results. The temperature dependence of PL intensity ratio is well explained using the spontaneous emission theory for e-hh and e-hh transitions. front which the ratio can be characterized mainly by the energy separation between the fill and Ill states.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diluted magnetic nonpolar GaN:Mn films have been fabricated by implanting Mn ions into unintentionally doped nonpolar a-plane (1 1 (2) over bar 0) GaN films with a subsequent rapid thermal annealing (RTA) process. The structure, morphology and magnetic characteristics of the samples were investigated by means of high-resolution x-ray diffraction (XRD), atomic force microscopy (AFM) and a superconducting quantum interference device (SQUID), respectively. The XRD analysis shows that the RTA process can effectively recover the crystal deterioration caused by the implantation process and that there is no obvious change in the lattice parameter for the as-annealed sample. The SQUID result indicates that the as-annealed sample shows ferromagnetic properties and magnetic anisotropy at room temperature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the electronic structures and magnetic properties of the anatase TiO2 doped with 3d transition metals (V, Cr, Mn, Fe, Co, Ni), using first-principles total energy calculations based on density functional theory (DFT). Using a molecular-orbital bonding model, the electronic structures of the doped anatase TiO2 are well understood. A band coupling model based on d-d level repulsions between the dopant ions is proposed to understand the chemical trend of the magnetic ordering. Ferromagnetism is found to be stabilized in the V-, Cr-, and Co-doped samples if there are no other carrier native defects or dopants. The ferromagnetism in the Cr- and Co-doped samples may be weakened by the donor defects. In the Mn-, and Fe-doped samples, the ferromagnetism can be enhanced by the acceptor and donor defects, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A series of metamorphic high electron mobility transistors (MMHEMTs) with different V/III flux ratios are grown on GaAs (001) substrates by molecular beam epitaxy (XIBE). The samples are analysed by using atomic force microscopy (AFM), Hall measurement, and low temperature photoluminescence (PL). The optimum V/III ratio in a range from 15 to 60 for the growth of MMHEMTs is found to be around 40. At this ratio, the root mean square (RMS) roughness of the material is only 2.02 nm; a room-temperature mobility and a sheet electron density are obtained to be 10610.0cm(2)/(V.s) and 3.26 x 10(12)cm(-2) respectively. These results are equivalent to those obtained for the same structure grown on InP substrate. There are two peaks in the PL spectrum of the structure, corresponding to two sub-energy levels of the In0.53Ga0.47 As quantum well. It is found that the photoluminescence intensities of the two peaks vary with the V/III ratio, for which the reasons are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wurtzite stalactite-like quasi-one-dimensional ZnS nanoarrays with ZnO protuberances were synthesized through a thermal evaporation route. The structure and morphology of the samples are studied and the growth mechanism is discussed. X-ray diffraction (XRD) results show both the ZnS stem and the ZnO protuberances have wurtzite structure and show preferred [001] oriented growth. The photoluminescence and field emission properties have also been investigated. Room temperature photoluminescence result shows it has a strong green light emission, which has potential application for green light emitter. Experimental results also show that the stalactite arrays have a good field emission property, with turn-on field of 11.4 V/mu m, and threshold field of 16 V/mu m. The ZnO protuberances on the ZnS stem might enhance the field emission notably.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thermodynamic properties of the spin-1/2 diamond quantum Heisenberg chain model have been investigated by means of the transfer matrix renormalization group (TMRG) method. Considering different crystal structures, by changing the interactions among different spins and the external magnetic fields, we first investigate the magnetic susceptibility, magnetization, and specific heat of the distorted diamond chain as a model of ferrimagnetic spin systems. The susceptibility and the specific heat show different features for different ferromagnetic (F) and antiferromagnetic (AF) interactions and different magnetic fields. A 1/3 magnetization plateau is observed at low temperature in a magnetization curve. Then, we discuss the theoretical mechanism of the double-peak structure of the magnetic susceptibility and the three-peak structure of the specific heat of the compound Cu-3(CO3)(2)(OH)(2), on which an elegant measurement was performed by Kikuchi [Phys. Rev. Lett. 94, 227201 (2005)]. Our computed results are consistent with the main characteristics of the experimental data. Meanwhile, we find that the double-peak structure of susceptibility can be found in several different kinds of spin interactions in the diamond chain. Moreover, a three-peak behavior is observed in the TMRG results of magnetic susceptibility. In addition, we perform calculations relevant for some experiments and explain the characteristics of these materials. (c) 2007 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The hole-mediated Curie temperature in Mn-doped wurtzite ZnO nanowires is investigated using the k center dot p method and mean field model. The Curie temperature T-C as a function of the hole density has many peaks for small Mn concentration (x(eff)) due to the density of states of one-dimensional quantum wires. The peaks of T-C are merged by the carriers' thermal distribution when x(eff) is large. High Curie temperature T-C > 400 K is found in (Zn,Mn)O nanowires. A transverse electric field changes the Curie temperature a lot. (Zn,Mn)O nanowires can be tuned from ferromagnetic to paramagnetic by a transverse electric field at room temperature. (c) 2007 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This letter reports on the Raman, optical and magnetic properties of FeNi co-doped ZnO nanowires prepared via a soft chemical solution method. The microstructural investigations show that the NiFe co-dopants are substituted into wurtzite ZnO nanostructure without forming any secondary phase. The co-doped nanowires show a remarkable reduction of 34 nm (267.9 meV) in the optical band gap, while suppression in the deep-level defect transition in visible luminescence. Furthermore, these nanowires exhibit ferromagnetism and an interesting low-temperature spin glass behavior, which may arise due to the presence of disorder and strong interactions of frustrated spin moments of Ni and Fe co-dopants on the ZnO lattice sites. Copyright (C) EPLA, 2009

Relevância:

100.00% 100.00%

Publicador:

Resumo:

InN thin films with different thicknesses are grown by metal organic chemical vapor deposition, and the dislocations, electrical and optical properties are investigated. Based on the model of mosaic crystal, by means of X-ray diffraction skew geometry scan, the edge dislocation densities of 4.2 x 10(10) cm(-2) and 6.3 x 10(10) cm(-2) are fitted, and the decrease of twist angle and dislocation density in thicker films are observed. The carrier concentrations of 9 x 10(18) cm(-3) and 1.2 x 10(18) cm(-3) are obtained by room temperature Hall effect measurement. V-N is shown to be the origin of background carriers, and the dependence of concentration and mobility on film thickness is explained. By the analysis of S-shape temperature dependence of photoluminescence peak, the defects induced carrier localization is suggested be involved in the photoluminescence. Taking both the localization and energy band shrinkage effect into account, the localization energies of 5.05 meV and 5.58 meV for samples of different thicknesses are calculated, and the decrease of the carrier localization effect in the thicker sample can be attributed to the reduction of defects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

(In, Cr)As ferromagnetic semiconductor quantum dots (QDs) were grown by molecular beam epitaxy on GaAs (001) substrates. The growth temperature effects on structure and magnetism of the QDs were investigated systematically. The Cr(2+)3d(4) states and quantum confined effect are assumed to play an important role in the room-temperature ferromagnetism of (In, Cr)As QDs. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have fabricated a set of samples of zincblende Mn-rich Mn(Ga)As clusters embedded in GaAs matrices by annealing (Ga,Mn)As films with different nominal Mn content at 650 degrees C. For the samples with Mn content no more than 4.5%, the Curie temperature reaches nearly 360 K. However, when Mn content is higher than 5.4%, the samples exhibit a spin-glass-like behavior. We suggest that these different magnetic properties are caused by the competing result of dipolar and Ruderman-Kittel-Kasuya-Yosida interaction among clusters. The low-temperature spin dynamic behavior, especially the relaxation effect, shows the extreme creeping effect which is reflected by the time constant tau of similar to 10(11) s at 10 K. We explain this phenomenon by the hierarchical model based on the mean-field approach. We also explain the memory effect by the relationship between the correlation function and the susceptibility.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dilute magnetic nonpolar GaN films have been fabricated by implanting Mn into unintentionally doped nonpolar a-plane GaN films at room temperature, and a subsequent rapid thermal annealing. The X-ray diffraction analysis shows that after rapid thermal annealing the peak of the GaN X-ray diffraction curve shifts to a lower angle, indicating a slight expansion of the GaN crystal lattice. Atomic force microscopy analysis shows that the annealing process does not change the morphology of the sample greatly. Magnetic property analysis indicates that the as-annealed sample shows obvious ferromagnetic properties. (C) 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cobalt-doped ZnO (Zn1-xCoxO) thin films were fabricated by reactive magnetron cosputtering. The processing conditions were carefully designed to avoid the occurrence of Co precipitations. The films are c-axis oriented, and the solubility limit of Co in ZnO is less than 17%, determined by x-ray diffraction. X-ray photoemission spectroscopy measurements show Co ions have a chemical valance of 2+. In this paper, hysteresis loops were clearly observed for Zn1-xCoxO films at room temperature. The coercive field, as well as saturation magnetization per Co atom, decreases with increasing Co content, within the range of 0.07

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hydrogenated amorphous silicon-carbon (a-SiC:H) films were deposited by plasma enhanced chemical vapor deposition (PECVD) with a fixed methane to silane ratio ([CH4]/[SiH4]) of 1.2 and a wide range of hydrogen dilution (R-H=[H-2]/[SiH4 + CH4]) values of 12, 22, 33, 102 and 135. The impacts of RH on the structural and optical properties of the films were investigated by using UV-VIS transmission, Fourier transform infrared (FTIR) absorption, Raman scattering and photoluminescence (PL) measurements. The effects of high temperature annealing on the films were also probed. It is found that with increasing hydrogen dilution, the optical band gap increases, and the PL peak blueshifts from similar to1.43 to 1.62 eV. In annealed state, the room temperature PL peak for the low R-H samples disappears, while the PL peak for the high R-H samples appears at similar to 2.08 eV, which is attributed to nanocrystalline Si particles confined by Si-C and Si-O bonds.