398 resultados para Grating coupling coefficient
Resumo:
An index-coupled DFB laser with a sampled grating has been designed and fabricated. The key concept of the approaches is to utilize the +1st-order reflection of the sampled grating for laser operation, and use a conventional holographic exposure combined with the usual photolithography to form the sampled grating. The typical threshold current of the sampled grating DFB laser is 25 mA, and the optical output is about 10 mW at the injected current of 100 mA. The lasing wavelength of the device is 1.5314 mu m, which is the +1st-order peak of the sampled grating.
Resumo:
The lasing wavelength of a complex-coupled DFB laser is controlled by a sampled grating. The key concepts of the approach are to utilize the -1st order (negative first order) reflection of a sampled grating for laser single mode operation, and use conventional holographic exposure combined with the usual photolithography to fabricate the sampled grating. The typical threshold current of the sampled grating based DFB laser is 32 mA, and the optical output is about 10 mW at an injected current of 100 mA. The lasing wavelength of the device is 1.5356 mu m, which is the -1st order wavelength of the sampled grating.
Resumo:
Mode coupling between the whispering-gallery modes (WGMs) is numerically investigated for a two-dimensional microdisk resonator with an output waveguide. The equilateral-polygonal shaped mode patterns can be constructed by mode coupling in the microdisk, and the coupled modes can still keep high quality factors (Q factors). For a microdisk with a diameter of 4.5 mu m and a refractive index of 3.2 connected to a 0.6-mu m-wide output waveguide, the coupled mode at the wavelength of 1490 nm has a Q factor in the order of 10(4), which is ten times larger than those of the uncoupled WGMs, and the output efficiency defined as the ratio of the energy flux confined in the output waveguide to the total radiation energy flux is about 0.65. The mode coupling can be used to realize high efficiency directional-emission microdisk lasers. (C) 2009 Optical Society of America
Resumo:
Surface plasmons(SPs) generated in nano metallic gratings on medium layer can greatly enhance the transmission field through the metallic gratings. The enhancement effect is achieved from lambda = 500 nm to near-infrared domain. The enhancement rate is about 110 % at the wavelength of about 6 10 nm and about 180 % at lambda = 700 nm and 740 nm where most kinds of thin film solar cells have a high spectral response. These structures should provide a promising way to increase the coupling efficiency of thin film solar cells and optical detectors of different wavelength response.
Resumo:
A scheme for hi-fi all-optical continuously tunable delay is proposed. The signal wavelength is converted to a desired idler wavelength and converted back after being delayed by a high linear-chirp-rate (HLCR) fiber Bragg grating (FBG) based on four-wave mixing (FWM) in a highly-nonlinear photonic crystal fiber (HN-PCF). In our experiment, 400 ps (more than 8 full width of half maximum, FWHM) tunable delay is achieved for a 10 GHz clock pulse with relative pulse width broaden ratio (RPWBR) of 2.08%. The power penalty is only 0.3 dB at 10(-9) BER for a 10 Gb/s 2(31)-1 pseudo random bit sequence (PRBS) data. (c) 2009 Elsevier B.V. All rights reserved.
Resumo:
Decoherence properties of two Josephson charge qubits coupled via the sigma(x)sigma(x) type are investigated. Considering the special structure of this new design, the dissipative effects arising from the circuit impedance providing the fluxes for the qubits' superconducting quantum interference device loops coupled to the sigma(x) qubit variables are considered. The results show that the overall decoherence effects are significantly strong in this qubit design. It is found that the dissipative effects are stronger in the case of coupling to two uncorrelated baths than are found in the case of one common bath.
Resumo:
Current-voltage (I-V) characteristics of GaAs-based resonant tunneling diodes have been investigated in the presence of a perpendicular magnetic field. Electron resonant tunneling is strongly suppressed by the applied magnetic field, leading to peak current decreasing with increasing magnetic field. The observed plateau-like structures appear in negative differential resistance region on the I-V curves and are magnetic-field dependent. The plateau-like structures are due to the coupling between the energy levels in the emitter well and in the main quantum well. (C) 2004 American Institute of Physics.
Resumo:
We have calculated the in-plane conductance of a barrier with the Dresselhaus spin-orbit interaction, which is sandwiched between two spin-polarized materials aligned arbitrarily. Besides a transmitted in-plane current which arises on the drain side as pointed out in Phys. Rev. Lett. 93, 056601 (2004), a reflected in-plane current always appears simultaneously on the source side near the interface of the barrier. The spin polarization of the source affects the transmitted current more than the reflected one, and conversely the spin polarization of the drain affects the reflected current more. The relationship between transmitted current and the reflected one has been studied.
Resumo:
Some integrated optics devices can be made based on the interdigital electro-optic Bragg diffraction grating. The point-matching method is extended to the analysis of interdigital electro-optic Bragg diffraction gratings. This method provides a simple and fast analytic expression of the electric field in the structure. The field distributions are used to calculate the optical and electrical characteristic parameters of the gratings. The effects of finite conductor thickness have been taken into account in the analysis. It is shown that the simulation results agree well with the measured data.
Resumo:
The effects of lattice vibration on the system in which the electron is weakly coupled with bulk longitudinal optical phonons and strongly coupled with interface optical phonons in an infinite quantum well were studied by using Tokuda' linear-combination operator and a modified LLP variational method. The expressions for the effective mass of the polaron in a quantum well QW as functions of the well's width and temperature were derived. In particular, the law of the change of the vibration frequency of the polaron changing with well' s width and temperature are obtained. Numerical results of the effective mass and the vibration frequency of the polaron for KI/AgCl/Kl QW show that the vibration frequency and the effective mass of the polaron decrease with increasing well's width and temperature, but the contribution of the interaction between the electron and the different branches of phonons to the effective mass and the vibration frequency and the change of their variation with the well's width and temperature are greatly different.
Resumo:
A 32-channel 50-GHz spaced arrayed-waveguide grating with our innovative configuration has been designed and fabricated. The performance of the device has been fully tested by using a tunable laser light source, optical power meter, and polarization controller. The insertion loss (IS) of the device is 4.2 similar to 7.4 dB. The crosstalk is about -28 clB. The IS uniformity is less than 3.2 dB. With our configuration, the performance of the device has been enhanced effectively and the difficulty in alignment process has been decreased obviously. (c) 2005 Society of Photo-Optical Instrumentation Engineers.
Resumo:
A ridge laser diode monolithically integrated with a buried-ridge-structure dual-waveguide spot-size converter operating at 1.58 mu m is successfully fabricated by means of low-energy ion implantation quantum well intermixing and asymmetric twin waveguide technology. The passive waveguide is optically combined with a laterally tapered active core to control the mode size. The devices emit in a single transverse and quasi single longitudinal mode with a side mode suppression ratio of 40.0dB although no grating is fabricated in the LD region. The threshold current is 50 mA. The beam divergence angles in the horizontal and vertical directions are as small as 7.3 degrees x 18.0 degrees, respectively, resulting in 3.0dB coupling loss With a cleaved single-mode optical fibre.
Resumo:
An arrayed waveguide grating based on SOI material was fabricated by inductive coupled plasma (ICP) etching technology. The central wavelength of the device was designed at 1.5509 mu m and the channel spacing was 200 GHz. Comparing with the values of the design, the differences of the central wavelength and the channel spacing in the test were 0.28 nm and 0.02 nm, respectively. The adjacent channel crosstalk was about 10 dB, and the uniformity of the five channels' insertion loss was only 0.7 dB. The results show that the device can be used as a demultiplexer.
Resumo:
We have demonstrated stable self-starting passive mode-locking in a diode-end-pumped Nd: YVO4 laser using a semiconductor saturable absorber mirror (SESAM). An ln(0.25)Ga(0.75)As single quantum-well SESAM, which was grown by the metalorganic chemical-vapor deposition technique at low temperature, acts as a passive mode-locking device and an output coupler at the same time. Continuous-wave mode-locked transform-limited pulses were obtained at 1064 nm with a pulse duration of 2.1 ps and an average output power of 1.28 W at a repetition rate of 96.5 MHz. (c) 2005 American Institute of Physics.
Resumo:
A 1.55-mum laser diode integrated with a spot-size converter was fabricated in a single step epitaxial by using the conventional photolithography and chemical wet etching process. The device was constructed by a conventional ridge waveguide active layer and a larger passive ridge-waveguide layer. The threshold current was 40 mA together with high slope efficiency of 0.24 W/A. The beam divergence angles in the horizontal and vertical directions were as small as 12.0degrees x 15.0degrees, respectively, resulting in about 3.2-dB coupling losses with a cleaved optical fibre.