302 resultados para Electric field measurement


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Using analytical expressions for the polarization field in GaN quantum dot, and an approximation by separating the potential into a radial and an axial, we investigate theoretically the quantum-confined Stark effects. The electron and hole energy levels and optical transition energies are calculated in the presence of an electric field in different directions. The results show that the electron and hole energy levels and the optical transition energies can cause redshifts for the lateral electric field and blueshifts for the vertical field. The rotational direction of electric field can also change the energy shift.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We theoretically investigate the Rashba spin-orbit interaction in InAs/GaSb quantum wells (QWs). We find that the Rashba spin-splitting (RSS) sensitively depends on the thickness of the InAs layer. The RSS exhibits nonlinear behavior for narrow InAs/GaSb QWs and the oscillating feature for wide InAs/GaSb QWs. The nonlinear and oscillating behaviors arise from the weakened and enhanced interband coupling. The RSS also show asymmetric features respect to the direction of the external electric field. (C) 2008 American Institute of Physics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, how the dots' radius, At concentration and external electric field affect the single electron energy states in GaAs/AlxGa1-xAs spherical quantum dots are discussed in detail. Furthermore, the modification of the energy states is calculated when the difference in effective electron mass in GaAs and AlxGa1-xAs are considered. In addition, both the analytical method and the plane wave method are used in calculation and the results are compared, showing that they are in good agreement with each other. The results and methods can provide useful information for the future research and potential applications of quantum dots.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The spin Hall effect can be induced by both extrinsic impurity scattering and intrinsic spin-orbit coupling in the electronic structure. The HgTe/CdTe quantum well has a quantum phase transition where the electronic structure changes from normal to inverted. We show that the intrinsic spin Hall effect of the conduction band vanishes on the normal side, while it is finite on the inverted side. By tuning the Cd content, the well width, or the bias electric field across the quantum well, the intrinsic spin Hall effect can be switched on or off and tuned into resonance under experimentally accessible conditions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

By means of the transfer matrix technique, interface-induced Rashba spin splitting of conduction subbands in Al0.3Ga0.7As/GaAs/AlxGa1-xAs/Al0.3Ga0.7As step quantum wells which contain internal structure inversion asymmetry introduced by the insertion of AlxGa1-xAs step potential is investigated theoretically in the absence of electric field and magnetic field. The dependence of spin splitting on the well width, step width and Al concentration is investigated in detail. We find that the sign of the first excited subband spin splitting changes with well width and step width, and is opposite to that of the ground subband under certain conditions. The sign and strength of the spin splitting are shown to be sensitive to the components of the envelope function at three interfaces. Copyright (C) EPLA, 2009

Relevância:

80.00% 80.00%

Publicador:

Resumo:

By the method of finite difference, the anisotropic spin splitting of the AlxGa1-xAs/GaAs/AlyGa1-yAs/AlxGa1-xAs step quantum wells (QWs) are theoretically investigated considering the interplay of the bulk inversion asymmetry and structure inversion asymmetry induced by step quantum well structure and external electric field. We demonstrate that the anisotropy of the total spin splitting can be controlled by the shape of the QWs and the external electric field. The interface related Rashba effect plays an important effect on the anisotropic spin splitting by influencing the magnitude of the spin splitting and the direction of electron spin. The Rashba spin splitting presents in the step quantum wells due to the interface related Rashba effect even without external electric field or magnetic field.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Based on the effective-mass model, the lower energies of the electron and the hole of ZnO/MgxZn1-xO superlattices are calculated. Because of the mismatch of the lattice constant between the ZnO well and the MgxZn1-xO barrier, piezoelectric and spontaneous polarization exist in ZnO/MgxZn1-xO superlattices and a macroscopical internal electric held is found when well width L-w >4 nm and Mg concentration x > 0.2. The parameters of ZnO/MgxZn1-xO superlattices such as lattice constant, band offset, etc. are also proposed. Through calculations, we found the internal electric field can change the lowest energies of the electron and hole to 105.4 and 85.1 meV when well width L-w up to 70 angstrom, which will influence the electronic and optical properties of ZnO/MgxZn1-xO superlattices greatly, while the Rashba effect from the internal electric field is so small that it can be neglected. The ground state exciton energies with different Mg concentration x are also calculated by variational method, our results are very close to the experimental results when Mg concentration x <= 0.3. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

It is shown theoretically that the propagation of plasmons can be tuned by an external electric field via spin-orbit interactions in a two-dimensional electron gas formed in a semiconductor heterostructure. This may provide a manageable way of transmitting quantum information in a quantum device. A possible plasmon field effect transistor is proposed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the framework of effective-mass envelope function theory, including the effect of Rashba spin-orbit coupling, the binding energy E-b and spin-orbit split energy Gamma of the ground state of a hydrogenic donor impurity in AlGaN/GaN triangle-shaped potential heterointerface are calculated. We find that with the electric field of the heterojunction increasing, (1) the effective width of quantum well (W) over bar decreases and (2) the binding energy increases monotonously, and in the mean time, (3) the spin-orbit split energy Gamma decreases drastically. (4) The maximum of Gamma is 1.22 meV when the electric field of heterointerface is 1 MV/cm.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Quantum-confined Stark effect and built-in dipole moment in self-assembled InAs/GaAs quantum dots (QDs), which are grown at relative low temperature (460degreesC) and embedded in GaAs p-i-n structure, have been studied by dc-biased electroreflectance. Franz-Keldysh oscillations from the undoped GaAs layer are used to determine the electric field under various bias voltages. Stark shift of -34 meV for the ground-state interband transition of the QDs is observed when the electric field increases from 105 to 308 kV/cm. The separation of the electron and hole states in the growth direction of 0.4 nm, corresponding to the built-in dipole moment of 6.4x10(-29) C m, is determined. It is found that the electron state lies above that of the hole, which is the same as that predicted by theoretical calculations for ideal pyramidal InAs QDs. (C) 2004 American Institute of Physics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper we study a single electron tunneling through a vertically stacked self-assembled quantum disks structure using a transfer matrix technique in the framework of effective mass approximation. In the disks, the electron is confined both laterally and vertically; we separate the motion in the vertical and lateral directions within the adiabatic approximation and treat the energy levels of the latter as an effective confining potential. The influence of a constant applied electric field is taken into account using an exact Airy-function formalism and the current density is calculated at zero temperature. By increasing the widths of the barriers, we find the peaks of the current density shift toward lower voltage region; meanwhile, they can become even sharper. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Preferred growth of nanocrystalline silicon (nc-Si) was first found in boron-doped hydrogenated nanocrystalline (nc-Si:H) films prepared using plasma-enhanced chemical vapor deposition system. The films were characterized by high-resolution transmission electron microscope, X-ray diffraction (XRD) spectrum and Raman Scattering spectrum. The results showed that the diffraction peaks in XRD spectrum were at 2theta approximate to 47degrees and the exponent of crystalline plane of nc-Si in the film was (220). A considerable reason was electric field derived from dc bias made the bonds of Si-Si array according to a certain orient. The size and crystalline volume fraction of nc-Si in boron-doped films were intensively depended on the deposited parameters: diborane (B2H6) doping ratio in silane (SiH4), silane dilution ratio in hydrogen (H-2), rf power density, substrate's temperature and reactive pressure, respectively. But preferred growth of nc-Si in the boron-doped nc-Si:H films cannot be obtained by changing these parameters. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We have investigated the transient electroluminescence (EL) onset of the double-layer light-emitting devices made from poly(N-vinylcarbozole) (PVK) doped with 4-(dicyanomethylene)-2-t-butyl-6(1,1,7,7-tetramethyljulolidyl-9-enyl)-4H-pyran (DCJTB) and tris(8-hydroxy-quinoline) aluminium (Alq(3)). For the double-layered device in which PVK was doped with 0.1 wt% DCJTB, the EL onset of PVK lags that of DCJTB and Alq(3), while the EL onset of DCJTB and Alq(3) is simultaneous. However, the EL emission of the double-layered device of PVK/Alq(3) originates only from Alq(3). The results show that DCJTB dopants can not only help to tunnel electrons from Alq(3) zone to PVK but can also assist electrons transfer in PVK under high electric field by hopping between DCJTB molecules or from DCJTB to PVK sites at a low doping concentration of 0.1 wt%. When the DCJTB doping concentration is 4.0 wt%, the EL onset of Alq(3) lags that of DCJTB. The difference in the EL onsets of DCJTB, Alq(3) and PVK is attributed to the slow build-up of the internal space charge in the vicinity of the interface between PVK and Alq(3). The electron potential difference of the interface between Alq(3) and PVK doped by DCJTB can be adjusted by changing the DCJTB doping concentration in double-layer devices.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We theoretically investigate the spin-dependent transport through Cd1-xMnxTe diluted magnetic semiconductor (DMS) quantum dots (QD's) under the influence of both the external electric field and magnetic field using the recursion method. Our results show that (1) it can get a 100% polarized electric current by using suitable structure parameters; (2) for a fixed Cd1-xMnxTe DMS QD, the wider the system is, the more quickly the transmission coefficient increases; (3) for a fixed system length, the transmission peaks of the spin-up electrons move to lower Fermi energy with increasing Cd1-xMnxTe DMS QD radius, while the transmission of the spin-down electrons is almost unchanged; (4) the spin-polarized effect is slightly increased for larger magnetic fields; (5) the external static electric field moves the transmission peaks to higher or lower Fermi energy depending on the direction of the applied field; and (6) the spin-polarized effect decreases as the band offset increases. Our calculated results may be useful for the application of Cd1-xMnxTe DMS QD's to the spin-dependent microelectronic and optoelectronic devices.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Some integrated optics devices can be made based on the interdigital electro-optic Bragg diffraction grating. The point-matching method is extended to the analysis of interdigital electro-optic Bragg diffraction gratings. This method provides a simple and fast analytic expression of the electric field in the structure. The field distributions are used to calculate the optical and electrical characteristic parameters of the gratings. The effects of finite conductor thickness have been taken into account in the analysis. It is shown that the simulation results agree well with the measured data.