590 resultados para ETHYLENE POLYMERIZATION CATALYSTS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The morphology and mechanical properties of polypropylene/high-density polyethylene (PP/HDPE) blends in a wide range of compositions modified by a sequential Ziegler-Natta polymerization product (PP-PE) have been investigated. PP-PE contains multiple components such as PP, ethylene-propylene copolymer (EPC), and high molecular weight polyethylene (HMWPE). The effects of PP-PE on the mechanical properties and morphology of the PP/HDPE blends are the aggregative results of all its individual components. Addition of PP-PE to the blends not only improved the tensile strength of the blends, but the elongation at break increased linearly while the moduli were nearly unchanged. Morphological studies show that the adhesion between the two phases in all the blends of different compositions is enhanced and the dispersed domain sizes of the blends are reduced monotonously with the increment of the content of PP-PE. PP-PE has been demonstrated to be a more effective compatibilizer than EPC. Based on these results, it can be concluded that the tensile strength of the blends depends most on the adhesion between the two phases and the elongation at break depends most on the domain size of the dispersed component. (C) 1995 John Wiley & Sons, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Poly(styrene-acrylic acid)-lanthanide (Ln.PSAA) and poly(ethylene-acrylic acid)-neodymium (NdPEAA) complexes have been prepared and characterized. The infrared and X-ray photoelectron spectra indicate that the lanthanide complexes possess the bidentate carboxylate structure Ln-O-C(R)-O (see structure B in text). The catalytic behavior of the complexes has been described. The catalytic activities of Nd.PSAA and Nd.PEAA are much greater than that of the corresponding low molecular weight catalyst for butadiene polymerization. The activities of various individual lanthanide elements are quite different from one another. Neodymium shows the highest activity. Europium, samarium and the heavy elements exhibit very low or no activities. The cis-1,4 content of the polybutadiene obtained is not affected by different lanthanide elements in the series. The complex with the intermediate content of the functional group has a higher activity than the others. The polymer-supported lanthanide complexes having different constitutions have different catalytic activities. When the molar ratio of lanthanide to the functional group is ca. 0.2, the activity of the complex is in the optimum state. The activity is influenced by the dispersion of the lanthanide metal immobilized on the polymer chain. Catalytic activity can be improved by adding other metals to the catalyst system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The relationship between molecular and crystalline structural characteristics of the ethylene -dimethylaminoethylmethacrylate copolymers (EDAM) was investigated and related to melt flow index MI and average gross content of DAM comonomer, in comparison with low density polyethylene (LDPE) produced by the common high-pressure radical polymerization process. Although the average molecular weight and its distribution are influenced predominantly by the polymerization conditions, DAM-content seems not to depend significantly on molecular weight according to the GPC-FT/IR measurement. Comonomer sequence distributions were determined quantitatively with the C-13-NMR spectra entirely assigned by DEPT and H-1-C-13 COSY techniques. The result suggests the alternating copolymerization tendency and surprisingly coincides with the simulation out-puts based on the assumption of continuous complete mixing reactor model, using Mayo-Lewis equation and the same Q-e values as previously reported on different types of copolymers such as EVA and St.DAM (VA;vinylacetate, St;styrene). It was confirmed by WAXD and SAXS analyses that the crystallinity X(c) and the thickness of lamellar crystal l(c) decreased with increasing DAM-content, whereas the a-lattice and b-lattice dimensions enlarged. X(c) and l(c) can definitely be correlated to the heats of fusion and crystallization measured by DSC. The average size of spherulites measured with light scattering photometry tends to be enlarged with decreasing molecular weight (increasing MI) and DAM-content.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The catalytic performances of Mn-based catalysts have been investigated for the oxidative dehydrogenation of both ethane (ODE) and propane (ODP). The results show that a LiCl/MnOx/PC (Portland cement) catalyst has an excellent catalytic performance for oxidative dehydrogenation of both ethane and propane to ethylene and propylene, more than 60% alkanes conversion and more than 80% olefins selectivity could be achieved at 650 degrees C. In addition, the results indicate that Mn-based catalysts belong to p-type semiconductors, the electrical conductivity of which is the main factor in influencing the olefins selectivity. Lithium, chlorine and PC in the LiCl/MnOx/PC catalyst are all necessary components to keep the excellent catalytic performance at a low temperature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The past year has seen remarkable advances both in methanol to olefin process development and in understanding the catalysts and reactions invoked. The methanol to olefin process is now on the way to being commercialized locally with economic advantages in comparison with other natural gas utilization technologies and conventional naphtha cracking processes. Using a specially designed procedure, a catalyst for the selective synthesis of ethylene from methanol has been reliably reproduced. The relationships between catalyst properties and reaction performances are clearer than ever before.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A series of PtRu nanocomposites supported on H2O2-oxidized multi-walled carbon nanotubes (MWCNTs) were synthesized via two chemical reduction methods - one used aqueous formaldehyde (HCHO method) and the other used ethylene glycol (EG method) as the reducing agents. The effects of the solvents (water and ethylene glycol) and the surface composition of the MWCNTs on the deposition and the dispersion of the metal particles were investigated using N-2 adsorption. TEM. ICP-AES. FTIR and TPD. The wetting heats of the MWCNTs in corresponding solvents were also measured. The characterizations suggest that combination of the surface chemistry of the MWCNTs with the solvents decides the deposition and the dispersion of the metal nanoparticles. These nanocomposites were evaluated as proton exchange membrane fuel cell anode catalyts for oxidation of 50 ppm CO contaminated hydrogen and compared with a commercial PtRu/C catalyst. The data reveal superior performances for the nanocomposites prepared by the EG method to those by the HCHO method and even to that for tile Commercial analogue. Structure performance relationship of the nanocomposites was also studied. (C) 2005 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

SAPO-11 molecular sieves were synthesized from nonaqueous media. The effects of Si and Al sources as well as solvents on the catalytic performance of SAPO-11 were investigated by the hydroisomerization reaction of n-dodecane. The samples were characterized by XRD, XRF, N-2-adsorption, SEM, NH3-TPD, IR-NH3 and Si-29 CP MAS NMR. The SAPO-11 samples synthesized with tetraethoxysilane as the Si source showed higher Si incorporation contents than the SAPO molecular sieves prepared with polymeric Si sources (fumed silica and Si colloidal gel). The reaction results showed that Pt/SAPO-11 catalysts synthesized from ethylene glycol and glycerol media with the monomeric Si and Al sources (tetraethoxysilane, aluminum isopropoxide) exhibited higher catalytic activities than those catalysts with the polymeric Si or Al (pseudo-boehmite) sources, due to the larger external surface area and higher acidity of the former ones. Especially, the catalyst synthesized in an ethylene glycol medium possessed the highest catalytic activity. Over this catalyst, 88% conversion of n-dodecane was achieved at a low temperature of 250 degrees C.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The kinetic studies of the acrylic octadecyl ester and styrene polymerization in microemulsion systems, (1) cetyl pyridine bromide (CPDB)/t-butanol/styrene/water; (2) CPDB/t-butanol/toluene + acrylic octadecyl ester (1:1, w/v)/ water; (3) cetyl pyridine bromide/styrene/formamide, were made by using dynamic laser light scattering techniques (DLS). The mechanisms of nucleation of latex particles were discussed. The most possible nucleation location of the styrene and acrylic octadecyl ester microlatex particles in aqueous microemulsion system is in aqueous phase via homogeneous nucleation. Meanwhile, parts of microlatex particles are possibly produced via swollen micelles (microemulsions) and monomer droplets nucleation. On the other hand, the most possible nucleation location of the styrene microlatex particles in nonaqueous microemulsion system is inside monomer droplets. The relationship between the amount of monomer and the size of microlatex was also investigated. It has been found that the size of microlatex particles could be controlled by changing the amount of monomer. (C) 2002 Elsevier Science B.V. All rights reserved.