357 resultados para BLOCK-COPOLYMER MICELLE


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Self-assembling of novel biodegradable ABC-type triblock copolymer poly(ethylene glycol)-poly(L-lactide)-poly(L-glutamic acid) (PEG-PLLA-PLGA) is studied. In aqueous media, it self-assembles into a spherical micelle with the hydrophobic PLLA segment in the core and the two hydrophilic segments PEG and PLGA in the shell. With the lengths of PEG and PLLA blocks fixed, the diameter of the micelles depends on the length of the PLGA block and on the volume ratio of H2O/dimethylformamide (DMF) in the media. When the PLGA block is long enough, morphology of the self-assembly is pH-dependent. It assembles into the spherical micelle in aqueous media at pH 4.5 and into the connected rod at or below pH 3.2. The critical micelle concentration (cmc) of the copolymer changes accordingly with decreasing solution pH. Both aggregation states can convert to each other at the proper pH value. This reversibility is ascribed to the dissociation and neutralization of the COOH groups in the LGA residues. When the PLGA block is short compared to the PEG or PLLA block, it assembles only into the spherical micelle at various pH values.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have studied the lamellar orientation in thin films of a model diblock copolymer, symmetric poly(styrene)-b-poly(L-lactide) (PS-PLLA), in the melt state on supported silicon wafer surface. In this system, while the PLLA block prefers to wet the polymer/substrate interface, the polymer/air as well as polymer/polymer interface is neutral for both blocks due to the similar surface energies of PS and PLLA in melt state. Our results demonstrate that the interplay of the interfaces during phase separation results in a series of structures before approaching the equilibrium state. Lamellar orientation of thin films with different initial film thicknesses at different annealing stages has been investigated using atomic force microscopy (AFM), transmission electronic microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). It is found that in the early stage (annealing time t < 10 min), the polymer/substrate interface dominates the structure evolution, leading to a parallel lamellar structure with holes or islands formed depending on the initial film thickness. Later on, the neutral air interface becomes important and leads to a transition of lamellar orientation from parallel to perpendicular. It is interesting to see that for films with thickness h > 2L, where L is the bulk lamellar period, the lamellar orientation transition can occur independently in different parallel lamellar domains due to the neutrality of polymer/polymer interface.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Self-assembly thin films of symmetric triblock copolymer after annealing and quenching were examined by an effective Monte Carlo simulation method. The defects in the ordered lamellae of the thin films after quenching, which were dependent on the initialization of copolymer melts, are removed in the thin films after annealing. The mean-square gyration radius and end-to-end distance of copolymer chains in the thin films after annealing are smaller than those in the thin films after quenching because of the complete relaxation of polymer during annealing. We also find that the density of A block in the region near to the surface is higher than that in the interior of the thin films. As a result, it is different from the thin films of symmetric A(n)B(n) diblock copolymer, in which surface ordering forms before the interior, that ordering phenomena occurs first in the interior region in the thin films of symmetric A(n)B(m)A(n). triblocl copolymer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have investigated systematically the morphology of thin films spin-coated from solutions of a semicrystalline diblock copolymer, poly(L-lactic acid)-block-polystyrene (PLLA-b-PS), in solvents with varying selectivity. In neutral solvents (chloroform and tetrahydrofuran (THF)), a spinodal-like pattern was obtained and the pattern boundary was sharpened by diluting the solution. Meanwhile, loose spherical associates, together with larger aggregates composed of these associates by unimer bridges, formed partly due to crystallization of the PLLA blocks in relatively concentrated solutions. In slightly PS-selective solvent (e.g., benzene), both loose and compact spherical micelles were obtained, depending on the polymer concentration, coexisting with unimers. When enhancing the selectivity with mixed solvents, for example, mixing the neutral solvent and the slightly selective solvent with a highly PS-selective solvent, CS2, loose assemblies (nanorods in CS2/THF mixtures and polydisperse aggregates in CS2/benzene mixtures) and well-developed lamellar micelles were obtained.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have investigated the hole nucleation and growth induced by crystallization of thin crystalline-coil diblock copolymer films. Semicrystalline rodlike assemblies from neutral/selective binary solvent are used as seeds to nucleate crystallization at temperatures above the glass transition temperature (T-g) but below melting point (T-m). The crystallization of nanorods drives neighboring copolymer chains to diffuse into the growing nanorods. Depletion of copolymer chains yields hole nucleation and growth at the edge of the nanorods. Simultaneously, the polymer chains unassociated into the nanorods were oriented by induction from the free surface and the substrate, leading to limitation of the hole depth to the lamellar spacing, similar to20 nm. The holes, as well as the nanorods, grow as t(alpha), where t is the annealing time and a crossover in the exponent a. is found. The orientation and stretching of the copolymer chains by the surface and interface are believed to accelerate the crystallization, and in turn, the latter accelerates the growth rate of the holes. At T > T-m, the grains melt and the copolymer chains relax and flow into the first layer of the film.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have studied the surface morphology of symmetric poly(styrene)-block-poly(methyl methacrylate) diblock copolymer thin films after solvent vapor treatment selective for poly(methyl methacrylate). Highly ordered nanoscale depressions or striped morphologies are obtained by varying the solvent annealing time. The resulting nanostructured films turn out to be sensitive to the surrounding medium, that is, their morphologies and surface properties can be reversibly switchable upon exposure to different block-selective solvents.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ordered hexagonal mesoporous silica material (JLU-30) has been successfully synthesized in alkaline media at high temperature (> 160 degreesC, using cationic (1,3-dimethyl-2-imidazolidin-2-ylidene)hexadecylmethyl-ammonium bromide (DIHAB) as a template, and characterized with X-ray diffraction (XRD), transmission electron microscopy (TEM), nitrogen adsorption-desorption isotherms, differential thermal analysis (DTA), and thermogravimetric analysis (TG), as well as Al-27 and Si-29 nuclear magnetic resonance (NMR) spectroscopy. Mesoporous JLU-30 shows much higher hydrothermal stability than MCM-41. Si-29 NMR spectra indicate that the pore walls of JLU-30 samples synthesized at high temperature (160 degreesC) are fully condensed, giving a Q(4)/Q(3) ratio as high as 6.2. In contrast, MCM-41 synthesized at relatively low temperature (100 degreesC) shows the Q(4)/Q(3) + Q(2) ratio at 1.1. Such unique structural feature might be responsible for the observed highly hydrothermal stability of the mesoporous silica materials (JLU-30).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The micelle formation of a series of amphiphilic block copolymers in aqueous and NaCl solutions was studied by a fluorescent probe technique using pyrene as a 'model drug'. These copolymers were synthesized from poly (ethylene glycol) (PEG) and L-lactide by a new calcium ammoniate catalyst. They had fixed PEG block lengths (44, 104 or 113 ethylene oxide units) and various poly(L-lactide) (PLLA) block lengths (15-280 lactide units). The critical micelle concentration (cmc) was found to decrease with increasing PLLA content. The distinct dissimilarity of the cmc values of diblock and triblock copolymers based on the same block length of PEG provided evidence for the different configurations of their micelles. It was also observed that the introduction of NaCl salt significantly contributed to a decrease in the cmcs of the copolymers with short PEG and PLLA blocks, while it had less influence on the cmcs of copolymers with long PEG or PLLA blocks. The dependence of partition coefficients ranging from 0.2x10(5) to 1.9x10(5) on the PLLA content in the copolymer and on the micelle configuration was also discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report the morphology and phase behaviors of blend thin films containing two poly styrene-b-poly (methyl methacrylate) (PS-b-PMMA) diblock copolymers with different blending compositions induced by a selective solvent for the PMMA block, which were studied by transmission electron microscopy (TEM). The neat asymmetric PS-b-PMMA diblock copolymers employed in this study, respectively coded as a(1) and a(2), have similar molecular weights but different volume fractions of PS block (f(PS) = 0.273 and 0.722). Another symmetric PS-b-PMMA diblock copolymer, coded as s, which has a PS block length similar to that of a(1), was also used. For the asymmetric a(1)/a(2) blend thin films, circular multilayered structures were formed. For the asymmetric a(1)/symmetric s blend thin films, inverted phases with PMMA as the dispersed domains were observed, when the weight fraction of s was less than 50%. The origins of the morphology formation in the blend thin films via solvent treatment are discussed. Combined with the theoretical prediction by Birshtein et al. (Polymer 1992, 33, 2750), we interpret the formation of these special microstructures as due to the packing frustration induced by the difference in block lengths and the preferential interactions between the solvent and PMMA block.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The crystallization behaviors of the poly(ethylene glycol)-poly(epsilon-caprolactone) diblock copolymer with the PEG weight fraction of 0.50 (PEG(50)-PCL50) was studied by DSC, WAXD, SAXS, and FTIR. A superposed melting point at 58.5 degrees C and a superposed crystallization temperature at 35.4 degrees C were obtained from the DSC profiles running at 10 degrees C/min, whereas the temperature-dependent FTIR measurements during cooling from the melt at 0.2 degrees C/min showed that the PCL crystals formed starting at 48 degrees C while the PEG crystals started at 45 degrees C. The PEG and PCL blocks of the copolymer crystallized separately and formed alternating lamella regions according to the WAXD and SAXS results. The crystal growth of the diblock copolymer was observed by polarized optical microscope (POM). An interesting morphology of the concentric spherulites developed through a unique crystallization behavior. The concentric spherulites were analyzed by in situ microbeam FTIR, and it was determined that the morphologies of the inner and outer portions were mainly determined by the PCL and PEG spherulites, respectively. However, the compositions of the inner and outer portions were equal in the analysis by microbeam FTIR.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The crystallization behavior and morphology of the crystalline-crystalline poly(ethylene oxide)-poly(epsilon-caprolactone) diblock copolymer (PEO-b-PCL) was studied by differential scanning calorimetry (DSC), wide-angle X-ray diffraction (WAXD), Fourier transform infrared spectroscopy (FTIR), small-angle X-ray scattering (SAXS), and hot-stage polarized optical microscope (POM). The mutual effects between the PEO and PCL blocks were significant, leading to the obvious composition dependence of the crystallization behavior and morphology of PEO-b-PCL. In this study, the PEO block length was fixed (M-n = 5000) and the weight ratio of PCL/PEO was tailored by changing the PCL block length. Both blocks could crystallize in PEO-b-PCL with the PCL weight fraction (WFPCL) of 0.23-0.87. For the sample with the WFPCL of 0.36 or less, the PEO block crystallized first, resulting in the obvious confinement of the PCL block and vice versa for the sample with WFPCL of 0.43 or more. With increasing WFPCL, the crystallinity of PEO reduced continuously while the variation of the PCL crystallinity exhibited a maximum. The long period of PEO-b-PCL increased with increasing WFPCL from 0.16 to 0.50 but then decreased with the further increase of WFPCL due to the interaction of the respective variation of the thicknesses of the PEO and PCL crystalline lamellae.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The nonisothermal crystallization behavior of poly (L-lactide)-poly(ethylene glycol) ( PLLA-PEG) diblock copolymer was studied by means of real-time WAXD, DSC and POM, and Ozawa equation was used to analyze the kinetics of PLLA-PEG under nonisothermal crystallization conditions. During the crystallization of the high-T-m block (PLLA), the low-T-m block (PEG) acts as a noncrystalline diluent, and the crystallization behavior of PLLA obeys the Ozawa theory. When the PEG block begins to crystallize, the PLLA phase is always partially solidified and the presence of the spherulitic microstructure of PLLA profoundly restricts its crystallization behavior, which results in that the overall crystallization process does not obey the Ozawa equation. Furthermore, the study of the crystalline morphology of PLLA-PEG at different cooling rates indicates that when the cooling rate is from low to high, the crystalline morphology undergoes a transformation from the ring-banded spherulites to the typical Maltese cross spherulites, which experiences the mixed crystalline morphologies of ring-banded and typical Maltese cross spherulites, and the spherulitic size becomes smaller.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this Letter, crystal growth of a symmetric crystalline-amorphous diblock copolymer, poly(styrene-b-epsilon-caprolactone) (PS-b-PCL), in thin films was investigated by atomic force microscopy (AFM), Relief structures of holes and islands were formed during annealing the film at the molten state, and the in situ observation of subsequent crystal growth at room temperature indicated that the crystals were preferred to occur at the edge of holes or islands and grew into the interior area. It was concluded that the stretched PCL blocks at the edge of relief structures, caused by material transportation or deformation of the interface, could act as nucleation agents during polymer crystallization. The crystal growth rate of individual lamellae varied both from lamellae to lamellae and in time, but the area occupied by crystals increased constantly with time. At 22 degreesC, the growth rate was 1.2 x 10(-2) mum(2)/min with the scan size 2 x 2 mum(2).