259 resultados para quantum chemical calculations


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A theoretical model accounting for the macropolarization effects in wurtzite III-V nitrides quantum wells (QWs) is presented. Energy dispersions and exciton binding energies are calculated within the framework of effective-mass theory and variational approach, respectively. Exciton-associated transitions (EATs) are studied in detail. An energy redshift as high as 450 meV is obtained in Al0.25GaN0.75/GaN QWs. Also, the abrupt reduction of optical momentum matrix elements is derived as a consequence of quantum-confined Stark effects. EAT energies are compared with recent photoluminescence (PL) experiments and numerical coherence is achieved. We propose that it is the EAT energy, instead of the conduction-valence-interband transition energy that is comparable with the PL energy. To restore the reduced transition rate, we apply an external electric field. Theoretical calculations show that with the presence of the external electric field the optical matrix elements for EAT increase 20 times. (C) 2001 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Self-assembled Ge islands were grown on Si(100) substrate by Si2H6-Ge molecular beam epitaxy. After being subjected to chemical etching, it is found that the photoluminescence from the etched Ge islands became more intense and shifted to the higher-energy side compared to that of the as-deposited Ge islands. This behaviour was explained by the effect of chemical etching on the morphology of the Ge islands. Our results demonstrate that chemical etching can be a way to change the luminescence property of the as-deposited islands.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Self-assembled Ge islands were grown on Si (1 0 0) substrate by Si2H6-Ge molecular beam epitaxy. Subjected to a chemical etching, it is found that the size and shape (i.e. ratio of height to base width) of Ge islands change with etching time. In addition, the photoluminescence from the etched Ge islands shifted to the higher energy side compared to that of the as-deposited Ge islands. Our results demonstrated that chemical etching can be a way to change the size and shape of the as-deposited islands as well as their luminescence property. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have investigated transitions above and below band edge of GaNAs/GaAs and InGaNAs/GaAs single quantum wells (QWs) by photoluminescence (PL) as well as by absorption spectra via photovoltaic effects. The interband PL peak is observed to be dominant under high excitation intensity and at low temperature. The broad luminescence band below band edge due to the nitrogen-related potential fluctuations can be effectively suppressed by increasing indium incorporation into InGaNAs. In contrast to InGaNAs/GaAs QWs, the measured interband transition energy of GaNAs/GaAs QWs can be well fitted to the theoretical calculations if a type-II band lineup is assumed. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Red shifts of emission wavelength of self-organized In(Cla)As/GaAs quantum dots (QDs) covered by 3 nm thick InxGa1-xAs layer with three different In mole fractions (x = 0.1, 0.2 and 0.3, respectively) have been observed. Transmission electron microscopy images demonstrate that the stress along growth direction in the InAs dots was reduced due to introducing the InxGa1-xAs (x = 0.1, 0.2 and 0.3) covering layer instead of GaAs layer. Atomic force microscopy pictures show a smoother surface of InAs islands covered by an In0.2Ga0.8As layer. It is explained by the calculations that the redshifts of the photoluminescence (PL) spectra from the QDs covered by the InxGa1-xAs (x greater than or equal to 0.1) layers were mainly due to the reducing of the strain other than the InAs/GaAs intermixing in the InAs QDs. The temperature dependent PL spectra further confirm that the InGaAs covering layer can effectively suppress the temperature sensitivity of PL emissions. 1.3 mum emission wavelength with a very narrow linewidth of 19.2 mcV at room temperature has been obtained successfully from In,In0.5Ga0.5As/GaAs self-assembled QDs covered by a 3-nm In0.2Ga0.2As strain reducing layer. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the framework of effective mass envelope function theory, the electronic states of the InAs/GaAs quantum ring are studied. Our model can be used to calculate the electronic states of quantum wells, quantum wires, and quantum dots. In calculations, the effects due to the different effective masses of electrons in rings and out rings are included. The energy levels of the electron are calculated in the different shapes of rings. The results indicate that the inner radius of rings sensitively changes the electronic states. The energy levels of the electron are not sensitively dependent on the outer radius for large rings. If decreasing the inner and outer radii simultaneously, one may increase the energy spacing between energy levels and keep the ground state energy level unchanged. If changing one of two radii (inner or outer radius), the ground state energy level and the energy spacing will change simultaneously. These results are useful for designing and fabricating the double colors detector by intraband and interband translations. The single electron states are useful for studying the electron correlations and the effects of magnetic fields in quantum rings. Our calculated results are consistent with the recent experimental data of nanoscopic semiconductor rings. (C) 2001 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we conduct a theoretical analysis of the design, fabrication, and performance measurement of high-power and high-brightness strained quantum-well lasers emitting at 0.98 mum, The material system of interest consists of an Al-free InGaAs-InGaAsP active region and AlGaAs cladding layers. Some key parameters of the laser structure are theoretically analyzed, and their effects on the laser performance are discussed. The laser material is grown by metal-organic chemical vapor deposition and demonstrates high quality with low-threshold current density, high internal quantum efficiency, and extremely low internal loss. High-performance broad-area multimode and ridge-waveguide single-mode laser devices are fabricated. For 100-mum-wide stripe lasers having a cavity length of 800 mum, a high slope efficiency of 1.08 W-A, a low vertical beam divergence of 34 degrees, a high output power of over 4.45 W, and a very high characteristic temperature coefficient of 250 K were achieved. Lifetime tests performed at 1.2-1.3 W (12-13 mW/mum) demonstrates reliable performance. For 4-mum-wide ridge waveguide single-mode laser devices, a maximum output power of 394 mW and fundamental mode power up to 200 mW with slope efficiency of 0.91 mW/mum are obtained.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have studied the effect of rapid thermal annealing (RTA) on GaInNAs/GaAs quantum wells (QWs) grown by molecular-beam epitaxy using a dc plasma as the N source. It was found that RTA at low temperature (LT, 650 degrees C) and high temperature (HT, 900 degrees C) could both improve the QW quality significantly. To clarify the mechanism of quality improvement by RTA, a magnetic field perpendicular to the path of the N plasma flux was applied during the growth of the GaInNAs layers for the sake of comparison. It was found that LT-RTA mainly removed dislocations at interfaces related to the ion bombardment, whereas, HT-RTA further removed dislocations originating from the growth. LT-RTA caused only a slight blueshift of photoluminescence peak wavelength, probably due to defect-assisted interdiffusion of In-Ga at the QW interfaces. The blueshift caused by HT-RTA, on the other hand, was much larger. It is suggested that this is due to the fast defect-assisted diffusion of N-As at the QW interfaces. As defects are removed by annealing, the diffusion of In-Ga at interfaces would be predominant. (C) 2000 American Institute of Physics. [S0003- 6951(00)01535-7].

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we reported on the fabrication of 980 nm InGaAs/InGaAsP strained quantum-well (QW) lasers with broad waveguide. The laser structure was grown by low-pressure metalorganic chemical vapor deposition on a n(+)- GaAs substrate. For 3 mu m stripe ridge waveguide lasers, the threshold current is 30 mA and the maximum output power and the output power operating in fundamental mode are 350 mW and 200 mW, respectively. The output power from the single mode fiber is up to 100 mW, the coupling efficiency is 50%. We also fabricated 100 mu m broad stripe coated lasers with cavity length of 800 mu m, a threshold current density of 170 A/cm(2), a high slope efficiency of 1.03 W/A and a far-field pattern of 40 x 6 degrees are obtained. The maximum output power of 3.5 W is also obtained for 100 mu m wide coated lasers. (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The micro-Raman spectroscopy and infrared (IR) spectroscopy have been performed for the study of the microstructure of amorphous hydrogenated oxidized silicon (alpha-SiOx,:H) films prepared by Plasma Enhanced Chemical Vapor Deposition technique. It is found that a-SiOx:H consists of two phases: an amorphous silicon-rich phase and an oxygen-rich phase mainly comprised of HSi-SiO2 and HSi-O-3. The Raman scattering; results exhibit that the frequency of TO-like mode of amorphous silicon red-shifts with decreasing size of silicon-rich region. This is related to the quantum confinement effects, similar to the nanocrystalline silicon.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two-dimensional (2D) ordering of self-assembled InxGa1-xAs quantum dots (QDs) fabricated on GaAs(311)B surface by molecular beam epitaxy (MBE) are reported. The QDs are aligned into rows deferring from the direction of the misorientation of the substrate, and strongly dependent on the mole In content x of InxGa1-xAs solid solution. The ordering alignment deteriorates significantly as the In content is increased to above 0.5. The 2D ordering can be described as a centered rectangular unit mesh with the two sides parallel to [01 (1) over bar] and [(2) over bar 33], respectively. Their relative arrangement seems to be determined by a combination of the strongly repulsive elastic interaction between neighbouring islands and the minimization of the strain energy of the whole system. The ordering also helps to improve the size homogeneity of the InGaAs islands. Photoluminescence (PL) result demonstrates that QDs grown on (311)B have the narrowest linewidth and the strongest integrated intensity, compared to those grown on (100) and other high-index planes under the same condition. (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A 1.3-mu m AlGaInAs/InP buried heterostructure (BH) stripe distributed feedback laser with a novel AlInAs/InP complex-coupled grating grown by low-pressure metalorganic chemical vapor deposition (LP-MOCVD) is proposed and demonstrated. A high characteristic temperature (T-0 = 90K between 20-80 degrees C) and temperature-insensitive slope efficiency (0.25 dB drop from 20 to 80 degrees C) in 1.3 mu m AlGaInAs/InP DFB lasers was obtained by introducing AI(Ga)InAs graded-index separate-confinement heterostructure (GRINSCH) layers and a strained-compensated (SC) multi-quantum well (MQW).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The two-dimensional (2D) ordering of self-assembled InxGa1-xAs quantum dots (QDs) fabricated on GaAs(3 1 1)B surface by molecular beam epitaxy (MBE) are reported. The QDs are aligned into rows differing from the direction of the misorientation of the substrate, and strongly dependent on the mole In content x of InxGa1-As-x solid solution. The ordering alignment deteriorates significantly as the In content is increased to above 0.5. The 2D ordering can be described as a centered rectangular unit mesh with the two sides parallel to [0 1 (1) over bar] and [(2) over bar 3 3], respectively. Their relative arrangement seems to be determined by a combination of the strongly repulsive elastic interaction between the neighboring islands and the minimization of the strain energy of the whole system. The ordering also helps to improve the size homogeneity of the InGaAs islands. The photoluminescence (PL) result demonstrates that QDs grown on (3 1 1)B have the narrowest linewidth and the strongest integrated intensity, compared to those on (1 0 0) and other high-index planes under the same condition. (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ground state of a double quantum-dot structure is studied by a simplified Anderson-type model. Numerical calculations reveal that the ground-state level of this artificial molecule increases with the increasing single particle level of the dot, and also increases with the decreasing transfer integrals. We show the staircase feature of the electron occupation and the properties of the ground-state eigenvector by varying the;single particle level of the dot.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

650 nm-range AlGaInP multi-quantum well (MQW) laser diodes grown by low pressure metal organic chemical vapor deposition (LP-MOCVD) have been studied and the results are presented in this paper. Threshold current density of broad area contact laser diodes can be as low as 350 A/cm(2). Laser diodes with buried-ridge strip waveguide structures were made, threshold currents and differential efficiencies are (22-40) mA and (0.2-0.7) mW/mA, respectively. Typical output power for the laser diodes is 5 mW, maximum output power of 15 mW has been obtained. Their operation temperature can be up to 90 degrees C under power of 5 mW. After operating under 90 degrees C and 5 mW for 72 hrs, the average increments for the threshold currents of the lasers at 25 degrees C and the operation currents at 5 mW (at 25 degrees C) are (2-3) mA and (3-5) mA, respectively. Reliability tests showed that no obvious degradation was observed after 1400 hours of CW operation under 50 degrees C and 2.5 mW.