200 resultados para phosphoproteome, HNSCC, irradiation, cyclooxygenase-inhibitor
Resumo:
To investigate the protective effects of melatonin against high-LET ionizing radiation, V79 Chinese hamster cells were irradiated with 100 keV/mu m carbon beam. Parallel experiments were performed with 200 kV X-rays. To avoid the impact from extra solvents, melatonin was dissolved directly in culture medium. Cells were cultured in melatonin medium for 1 hr before irradiation. Cell inactivation was measured with conventional colony forming assay, medium containing 6-thioguanine was used for the selection of mutants at hprt locus, and the cell cycle was monitored by flow cytometry. Both carbon beam and X-rays induced cell inactivation, hprt gene mutation and cell cycle G2 block dose-dependently. But carbon beam showed stronger effects as indicated by all three endpoints and the relative biological effectiveness (RBE) was 3.5 for cell killing (at 10% survival level) and 2.9 for mutation induction (at 5 x 10(-5) mutants/ cell level). Melatonin showed protective effects against ionizing radiation in a dose-dependent manner. In terms of cell killing, melatonin only increased the survival level of those samples exposed to 8Gy or larger of X-rays or 6 Gy or larger of carbon beam. In the induction of hprt mutation and G2 block, melatonin reduced such effects induced by carbon beam but not by X-rays. The results suggest that melatonin reduces the direct interaction of particles with cells rather than an indirect interaction. Further studies are required to disclose the underlying mechanisms.
Resumo:
Highly oriented pyrolytic graphite (HOPG) samples were irradiated by Xe ions of initial kinetic energy of 3 MeV/u. The irradiations were performed at temperatures of 500 and 800 K. Scanning tunneling microscopy (STM) images show that the tracks occasionally have elongated structures under high-temperature irradiation. The track creation yield at 800 K is by three orders of magnitude smaller compared to that obtained during room-temperature irradiation. STM and Raman spectra show that amorphization occurs in graphite samples irradiated at 500 K to higher fluences, but not at 800 K. The obtained experimental results clearly reveal that the irradiation under high temperature causes track annealing.
Resumo:
In the present work the photoluminescence (PL) character of sapphire implanted with 110-keV He, Ar or Ne ions and subsequently irradiated with 230-MeV Pb was studied. The implantation was performed at 320 and 600 K using fluences from 5.0 x 10(16) to 2.0 x 10(17) ions/cm(2). The Pb ion irradiation was carried out at 320 K. The obtained PL spectra showed peaks at 375, 413 and 450 nm with maximum intensity at an implantation fluence of 5.0 x 10(16) ions/cm(2) and a new peak at 390 nm appeared in the He-implanted and subsequently Pb-irradiated samples. Infrared spectra showed a broadening of the absorption band between 460 and 510 nm indicating strongly damaged regions formed in the Al2O3 samples. A possible PL mechanism is discussed.
Resumo:
The effects of 960 MeV carbon ion beam and 8 MeV X-ray irradiation on adventitious shoots from in vitro leaf explants of two different Saintpaulia ionahta (Mauve and Indikon) cultivars were studied with regard to tissue increase, shoots differentiation and morphology changes in the shoots. The experimental results showed that the survival fraction of shoot formation for the Mauve and Indikon irradiated with the carbon ion beam at 20 Gy were 0.715 and 0.600, respectively, while those for both the cultivars exposed to the Xray irradiation at the same dose were 1.000. Relative biological effectiveness (RBE) of Mauve with respect to X-ray was about two. Secondly, the percentage of regenerating explants with malformed shoots in all Mauve regenerating explants irradiated with carbon ion beam at 20 Gy accounted for 49.6%, while that irradiated with the same dose of X-ray irradiation was only 4.7%; as for Saintpatdia ionahta Indikon irradiated with 20 Gy carbon ion beam, the percentage was 43.3%, which was higher than that of X-ray irradiation. Last, many chlorophyll deficient and other varieties of mutants were obtained in this study. Based on the results above, it can be concluded that the effect of mutation induction by carbon ion beam irradiation on the leaf explants of Saintpaulia ionahta is better than that by X-ray irradiation; and the optimal mutagenic dose varies from 20 Gy to 25 Gy for carbon ion beam irradiation.
Resumo:
The breast and ovarian cancer susceptibility gene BRCA1 encodes a nuclear phosphoprotein, which functions as a tumor suppressor gene. Many studies suggested that multiple functions of BRCA1 may contribute to its tumor suppressor activity, including roles in cell cycle checkpoints, apoptosis and transcription. It is postulated that phosphorylation of BRCA1 is an important means by which its cellular functions are regulated. In this study, we employed phospho-Ser-specific antibody recognizing Ser-1524 to study BRCA1 phosphorylation under conditions of DNA damage and the effects of phosphorylation on BRCA1 functions. The results showed that 10 Gy X-ray treatment significantly induced phosphorylation of Ser-1524 but not total BRCA1 protein levels. The expression both of p53 and p21 increased after irradiation, but ionizing radiation (IR) -induced activation of p21 was prior to that of p53. The percentages of G0/G1 phase remarkably increased after IR. In addition, no detectable levels of 89 kDa fragment of PARP, a marker of apoptotic cells, were observed. Data implied that IR-induced phosphorylation of BRCA1 at Ser-1524 might activatep21 protein, by which BRCA1 regulated cell cycle, but play no role in apoptosis.
Resumo:
To investigate effects of nitric oxide on cellular radio-sensitivity, three human glioma cell lines, i.e. A172, A172 transfected green fluorescence protein (EGFP) gene (EA172) and A172 transfected inducible nitric oxide synthesis (iNOS) gene (iA72), were irradiated by C-12(6+) ions to 0, 1 or My. Productions of nitric oxide and glutathione (GSH) in A172, EA172 and iA172 were determined by chemical methods, cell cycle was analyzed by flow cytometry at the 24th hour after irradiation, and survival fraction of the cells was measured by colorimetric MTT assay at the 5th day after irradiation. The results showed that the concentrations of nitric oxide and GSH in iA172 were significantly higher than in A172 and EA172; the G(2)/M stage arrest induced by the C-12(6+) ion irradiation was observed in A172 and EA172 but not in iA172 at the 24th hour after exposure; and the survival fraction of iA172 was higher than that of EA172 and iA172. Data suggest that the radio-sensitivity of the A172 was reduced after the iNOS gene transfection. The increase of GSH production and the change of cellular signals such as the cell cycle control induced by nitric oxide may be involved in this radio-resistance.
Resumo:
从采集的土壤样品中分离筛选出一株碱性蛋白酶产生菌G-41,经16S rRNA分子鉴定为芽孢杆菌属菌株。该菌株在发酵培养基中能产生较高产量的胞外碱性蛋白酶(1.7×104U/mL)。以G-41为出发菌株,对其进行重离子辐照诱变处理,获得突变株G-41-68,将该突变株再次经重离子诱变,从大量突变株中筛选出碱性蛋白酶高产菌株15Gy-54,其酶活力达到6.22×104U/mL。与出发菌株相比较,突变株G-41-68和15Gy-54的酶活力分别提高了1.58倍和2.65倍。对突变株15Gy-54的发酵条件进行了优化研究,结果表明,该菌株的碱性蛋白酶活力得到进一步提高,达到7.18×104U/mL,其最适发酵条件为:培养基(g/100mL)为胰蛋白胨1、酵母膏0.5、乳糖5、Na2HPO4·12H2O0.4、KH2PO40.03、Na2CO30.1、MgSO40.0481(4×10-3mol/L)、pH8.0,培养温度41℃,振荡培养时间42-48h。实验结果表明,重离子辐照诱变技术是一种非常有效的微生物诱变育种新技术。
Resumo:
Polypropylene (PP) microporous membranes were successfully prepared by swift heavy ion irradiation and track-etching. Polypropylene foils were irradiated with Au-197 ions of kinetic energy 11.4 MeV.u(-1) (total energy of 2245.8 MeV) and fluence 1x10(8) ions.cm(-2) at normal incidence. The damaged regions produced by the gold ions along the trajectories were etched in H2SO4 and K2Cr2O7 solutions leading to the formation of cylindrical pores in the membranes. The pore diameters of the PP microporous membranes increased from 380 to 1610 nm as the etching time increased from 5 to 30 min. The surface and cross-section morphologies of the porous membranes were characterized by scanning electron microscopy (SEM). The micropores in the membranes were found to be cylindrical in shape, homogeneous in distribution, and equal in size. Some mathematical relations of the porosity of the PP microporous membranes were established by analytic derivation. The microporous membranes were used in lithium-ion batteries to measure their properties as separators. The electrical conductivity of the porous membrane immersed in liquid electrolyte was found to be comparable to that of commercial separators by electrochemical impedance spectroscopy (EIS). The results showed that the porosity and electrical conductivity were dependent on the ion fluence and etching time. By adjusting these two factors, microporous membranes with good porosity and electrical conductivity were made that met the requirements for commercial use.
Resumo:
利用离子辐照结合径迹蚀刻方法制备聚丙烯(PP)微孔膜.用加速器产生的单核能为11.4MeV·u-1(总能量2245.8MeV)的197Au离子束辐照PP膜,剂量为1×108ions·cm-2.辐照后PP膜沿离子路径产生损伤区域,用硫酸与重铬酸钾的混合液进行蚀刻(5-30min),制备出孔径为380-1610nm的聚丙烯微孔膜.对膜的表面和断面形貌进行表征,微孔膜的孔径大小及空间分布均匀,孔道上下贯通,形状近似为圆柱形.给出了微孔膜的孔隙率理论公式.将制备的聚丙烯微孔膜用作锂离子电池隔膜,用电化学阻抗谱(EIS)测定浸满电解液的微孔膜的离子电导率,并与商用隔膜进行比较.分析表明辐照剂量和孔径大小均会影响膜的孔隙率和离子电导率,选择合适的辐照剂量和蚀刻时间,可以制备出孔隙率和离子电导率符合应用标准的聚丙烯微孔膜.
Resumo:
枯草芽孢杆菌BJ1是一种在真菌病害防治中发挥重要作用的生防因子,为进一步提高它的抑菌能力,获得生防效果更好的高效菌种,利用不同能量和剂量的12C6+对生防菌BJ1进行了离子辐照处理。研究结果表明:离子辐照生防菌BJ1的最适宜剂量为200~400 Gy,传能线密度(LET)为60 keV/μm;突变菌株的抑菌能力比BJ1提高了2%~21%;不仅防病效果比BJ1提高了17.48%,而且对植物具有更好的促生长作用。
Resumo:
用能量11.4MeV/u和注量1×108ions/cm2的197Au离子垂直辐照聚丙烯薄膜,通过电导测量法监测温度、硫酸浓度和重铬酸钾浓度对径迹蚀刻速率的影响,得到合适的蚀刻条件;成功制备出孔径范围在600—1000nm的重离子径迹聚丙烯孔膜,并用场发射扫描电镜对孔的形状及孔径大小进行了表征,对孔洞锥角的形成进行了分析,为重离子辐照技术制备锂离子电池隔膜提供了实验数据。
Resumo:
核辐照应用于中药领域的研究得到人们广泛关注。综述了核辐照在中草药的栽培、育种和消毒等方面的应用,指出辐照诱变技术与生物技术相结合将为提高细胞突变率和加快中草药遗传改良开辟广阔前景。
Resumo:
Yeast strain Saccharornyces cerevisiae was irradiated with different doses of 85 MeV/u Ne-20(10+) to investigate DNA damage induced by heavy ion beam in eukaryotic microorganism. The survival rate, DNA double strand breaks (DSBs) and DNA polymorphic were tested after irradiation. The results showed that there were substantial differences in DNA between the control and irradiated samples. At the dose of 40 Cy, the yeast cell survival rate approached 50%, DNA double-strand breaks were barely detectable, and significant DNA polymorphism was observed. The alcohol dehydrogenase II gene was amplified and sequenced. It was observed that base changes in the mutant were mainly transversions of T-->G and T-->C. It can be concluded that heavy ion beam irradiation can lead to change in single gene and may be an effective way to induce mutation.
Resumo:
The aim of this study was to estimate the acute effects of low dose C-12(6+) ions or X-ray radiation on human immune function. The human peripheral blood lymphocytes (HPBL) of seven healthy donors were exposed to 0.05 Gy C-12(6+) ions or X-ray radiation and cell responses were measured at 24 h after exposure. The cytotoxic activities of HPBL were determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT); the percentages of T and NK cells subsets were detected by flow cytometry; mRNA expression of interleukin (IL)-2, tumor necrosis factor (TNF)-alpha and interferon (IFN)-gamma were examined by real time quantitative RT-PCR (qRT-PCR); and these cytokines protein levels in supematant of cultured cells were assayed by enzyme-linked immunosorbent assays (ELISA). The results showed that the cytotoxic activity of HPBL, mRNA expression of IL-2, IFN-gamma and TNF-alpha in HPBL and their protein levels in supernatant were significantly increased at 24 h after exposure to 0.05 Gy C-12(6+) ions radiation and the effects were stronger than observed for X-ray exposure. However, there was no significant change in the percentage of T and NK cells subsets of HPBL. These results suggested that 0.05 Gy high linear energy transfer (LET) C-12(6+) radiation was a more effective approach to host immune enhancement than that of low LET X-ray. We conclude that cytokines production might be used as sensitive indicators of acute response to LDL (C) 2009 COSPAR. Published by Elsevier Ltd. All rights reserved.
Resumo:
室温下,用94MeV的Xe离子辐照纳米晶和非晶硅薄膜以及单晶硅样品,辐照量分别为1.0×1011,1.0×1012和1.0×1013ions/cm2。所有样品均在室温下用UV/VIS/NIR光谱仪进行检测分析。通过对比研究了纳米晶、非晶、单晶硅样品的光学带隙随Xe离子辐照量的变化。结果表明,不同结构的硅材料中Xe离子辐照引起的光学带隙变化规律差异显著:随着Xe离子辐照量的增加,单晶硅的光学带隙基本不变,非晶硅薄膜的光学带隙由初始的约1.78eV逐渐减小到约1.54eV,而纳米晶硅薄膜的光学带隙则由初始的约1.50eV快速增大至约1.81eV,然后再减小至约1.67eV。对硅材料结构影响辐照效应的机理进行了初步探讨。