169 resultados para Time-domain Method
Resumo:
The band structure of 2D photonic crystals (PCs) and localized states resulting from defects are analyzed by finite-difference time-domain (FDTD) technique and Pade approximation. The effect of dielectric constant contrast and filling factor on photonic bandgap (PBG) for perfect PCs and localized states in PCs with point defects are investigated. The resonant frequencies and quality factors are calculated for PCs with different defects. The numerical results show that it is possible to modulate the location, width and number of PBGs and frequencies of the localized states only by changing the dielectric constant contrast and filling factor.
Resumo:
The semiconductor microlasers based on the equilateral triangle resonator (ETR) can be fabricated from the edge-emitting laser wafer by dry-etching technique, and the directional emission can be obtained by connecting an output waveguide to one of the vertices of the ETR. We investigate the mode characteristics, especially the mode quality factor, for the ETR with imperfect vertices, which is inevitable in the real technique process. The numerical simulations show that the confined modes can still have a high quality factor in the ETR with imperfect vertices. We can expect that the microlasers is a suitable light source for photonic integrated circuits.
Resumo:
The formations of the surface plasmonpolariton (SPP) bands in metal/air/metal (MAM) sub-wavelength plasmonic grating waveguide (PGW) are proposed. The band gaps originating from the highly localized resonances inside the grooves can be simply estimated from the round trip phase condition. Due to the overlap of the localized SPPs between the neighboring grooves, a Bloch mode forms in the bandgap and can be engineered to build a very flat dispersion for slow light. A chirped PGW with groove depth varying is also demonstrated to trap light, which is validated by finite-difference time-domain (FDTD) simulations with both continuous and pulse excitations.
Broadband short-range surface plasmon structures for absorption enhancement in organic photovoltaics
Resumo:
We theoretically demonstrate a polarization-independent nanopatterned ultra-thin metallic structure supporting short-range surface plasmon polariton (SRSPP) modes to improve the performance of organic solar cells. The physical mechanism and the mode distribution of the SRSPP excited in the cell device were analyzed, and reveal that the SRSPP-assisted broadband absorption enhancement peak could be tuned by tailoring the parameters of the nanopatterned metallic structure. Three-dimensional finite-difference time domain calculations show that this plasmonic structure can enhance the optical absorption of polymer-based photovoltaics by 39% to 112%, depending on the nature of the active layer (corresponding to an enhancement in short-circuit current density by 47% to 130%). These results are promising for the design of organic photovoltaics with enhanced performance.
Resumo:
We describe our research on the employment of an infrared upconversion screen made of electron trapping material (ETM) in combination with the high sensitivity of the S-20 photocathode responsive to visible radiation to produce a streak camera arrangement capable of viewing and recording infrared incident pulses. The ETM-based upconversion screen converts 800-1600 nm infrared radiation to visible light which is viewed or recorded by the S-20 photocathode. The peak values of the upconversion efficiency are located at 1165 nm for CaS:Eu, Sm and 1060 nm for CaS:Ce, Sm. The present experiment showed time resolution was 12.3 ps for a CaS:Eu, Sm screen and 8.4 ps for a CaS:Ce, Sm screen. The minimum detectability is 4.8 x 10(-9) J/mm(2) (minimum detectability of the coupled visible streak camera is 8.3x10(-10) J/mm(2)). Other parameters, such as spatial resolution and dynamic range, have also been measured and analyzed. The results show ETM can be used in the measurement of infrared ultrafast phenomena up to picosecond time domain. In consideration of the limited number of trapped electrons in ETM, the infrared-sensitive streak camera consisting of an ETM-based upconversion screen is suitable to operate in the single shot mode. (C) 1999 American Institute of Physics. [S0034-6748(99)00112-4].
Resumo:
We report on the performance of double sideband (DSB) modulated probe wave in Brillouin optical time domain analysis (BOTDA) distributed fiber sensor. Compared to single sideband (SSB)modulation, along the sensing fiber the pump depletion of DSB modulation is remarkably suppressed in time domain and also has a relatively narrower Brillouin gain spectrum in frequency domain. Both the theoretical simulation and the experimental results demonstrate that the DSB modulation provides potentially longer sensing distance and higher accuracy in measurement than the SSB modulation in the BOTDA distributed fiber sensor system.
Resumo:
A distributed temperature sensor based on Rayleigh scattering Brillouin optical time domain analysis (Rayleigh-BOTDA) is proposed in this paper. The sensor uses Rayleigh backscattering effect of microwave modulated pulse base sidebands as probe wave and a high sensitive photon counting detector for Brillouin signal intensity detection. Compared with a conventional BOTDA system, the Rayleigh-BOTDA effectively suppresses polarization-induced signal fluctuation resulting in improved signal intensity. The experimental scheme presented is simplified by using a single laser with one-end access. The temperature accuracy of the new sensing system was demonstrated as 1 degrees C on spatial resolution of 3 m.
Resumo:
The authors developed a time dependent method to study the single molecule dynamics of a simple gene regulatory network: a repressilator with three genes mutually repressing each other. They quantitatively characterize the time evolution dynamics of the repressilator. Furthermore, they study purely dynamical issues such as statistical fluctuations and noise evolution. They illustrated some important features of the biological network such as monostability, spirals, and limit cycle oscillation. Explicit time dependent Fano factors which describe noise evolution and show statistical fluctuations out of equilibrium can be significant and far from the Poisson distribution. They explore the phase space and the interrelationships among fluctuations, order, amplitude, and period of oscillations of the repressilators. The authors found that repressilators follow ordered limit cycle orbits and are more likely to appear in the lower fluctuating regions. The amplitude of the repressilators increases as the suppressing of the genes decreases and production of proteins increases. The oscillation period of the repressilators decreases as the suppressing of the genes decreases and production of proteins increases.
Resumo:
A microsecond time-resolved laser fluorescence spectroscopic analysis set was developed, A chelate-cyclic anhydride of diethylenetrimin pentaacetic acid anhydride (DTPAA) was synthesized. An anti-HBs antibody was purified, A EU3+ -DTPAA-anti-HBs label was prepared by two step procedure. We described the optimal condtion with EU3+ as marker and DTPAA as chelate bounding to antibody molecule. Labeling parameters such as solvent pH, protein and chelate molar ratio, reaction time, separation method were discussed in detail.
Resumo:
In order to observe the effect of salinity on disease resistance and white spot syndrome virus (WSSV) proliferation in Fenneropenaeus chinensis, shrimps with latent WSSV were subjected to two acute salinity changes from the original salinity of 22 ppt to 18 and 14 ppt in an hour, respectively. The total haemocyte count (THC) of the challenged group showed no evident change under salinity adjustments, but the phenoloxidase (PO) index declined significantly (P<0.05) corresponding to continuing acute salinity changes from the 24th to the 72nd hour. According to the WSSV load detected by quantitative real-time PCR method, it was found that WSSV carried by the challenged group and control group were significantly different (P<0.05); acute salinity change from 22 to 14 ppt led to the WSSV carried in the challenged group being significantly higher (P<0.05) than that of those surviving in 22 ppt, but salinity change from 22 to 18 ppt had no such effect. At the end of the 72-h experiment, the challenged group subjected to salinity change from 22 to 14 ppt had nearly 3 times the WSSV load as the control group with no salinity change. Therefore, salinity changes over a particular range could result in a decrease of immunocompetence and obvious WSSV proliferation in the shrimps, leading to white spot syndrome developing from a latent infection to an acute outbreak. (C) 2005 Elsevier B.V All rights reserved.
Resumo:
本文提出一种基于多传感器融合的组合导航方法,能够在小型旋翼无人机上实现低成本、高精度导航定位.该方法通过建立导航系统的机械编排模型,设计了一个17状态的扩展卡尔曼滤波器(EKF).对加速计的零偏和陀螺仪的漂移进行在线估计,实时的补偿传感器的测量误差.从而对旋翼无人机的速度、位置、角速度和姿态等参数进行精确的估计.通过对实际飞行数据仿真实验,并对比参考的导航系统,证明该方法在飞机的全包线飞行下均能够解算出可靠的导航信息。
Resumo:
研究全地形移动机器人在不平坦地形中轮-地几何接触角的实时估计问题.本文以带有被动柔顺机构的六轮全地形移动机器人为对象,抛弃轮-地接触点位于车轮支撑臂延长线上这一假设,通过定义轮-地几何接触角δ来反映轮-地接触点在轮缘上位置的变化和地形不平坦给机器人运动带来的影响,将机器人看成是一个串-并联多刚体系统,基于速度闭链理论建立考虑地形不平坦和车轮滑移的机器人运动学模型,并针对轮-地几何接触角δ难以直接测量的问题,提出一种基于模型的卡尔曼滤波实时估计方法.利用卡尔曼滤波对机器人内部传感器的测量值进行噪声处理,基于机器人整体运动学模型对各个轮-地几何接触角进行实时估计,物理实验数据的处理结果验证了本文方法的有效性,从而为机器人运动学的精确计算和高质量的导航控制奠定了基础.
Resumo:
“零力矩点”是判定仿人机器人动态稳定运动的重要指标。本文根据零力矩点的概念,利用机器人车体的几何及动力学关系,建立基于反作用力的正交轮式移动仿人机器人的零力矩点模型;提出了基于电流传感器、电机编码器等传感器的零力矩点的实时测量方法,并给出了该方法的结构框图。由于轮式移动仿人机器人与地面呈点式接触,难于安装力传感器,所以这种方法尤其适用于轮式移动仿人机器人。
Resumo:
本文针对“CR- 0 2”AUV海试前的无动力下潜运动进行了预报 .该文在建立 AUV无动力下潜运动数学模型基础上 ,研究分析了其稳态运动的特点 ,提出了下潜深度变化率和纵倾角是描述 AUV无动力下潜运动的重要参数 ,并获得了它们的解析表达式 ,无需使用计算机 ,就能快速、方便、准确地确定上述参数 ,并选取适当的下潜压载 ,以提高下潜速度 ,减少下潜时间 ,该方法具实际应用价值 .
Resumo:
本文基于机器人动力学模型,通过引入相对误差准则,提出一种计算机器人逆动力学的简化实时快速算法.该算法,根据动力学模型中各元素在期望工作轨迹上的变化速率不同,运用相对误差准则确定出它们的实时计算周期,达到减少单位控制周期内计算动力学模型的操作数,文中给出了计算实例。