185 resultados para Strong migration


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Attaining sufficient accuracy and efficiency of generalized screen propagator and improving the quality of input gathers are often problems of wave equation presack depth migration, in this paper,a high order formula of generalized screen propagator for one-way wave equation is proposed by using the asymptotic expansion of single-square-root operator. Based on the formula,a new generalized screen propagator is developed ,which is composed of split-step Fourier propagator and high order correction terms,the new generalized screen propagator not only improving calculation precision without sharply increasing the quantity of computation,facilitates the suitability of generalized screen propagator to the media with strong lateral velocity variation. As wave-equation prestack depth migration is sensitive to the quality of input gathers, which greatly affect the output,and the available seismic data processing system has inability to obtain traveltimes corresponding to the multiple arrivals, to estimate of great residual statics, to merge seismic datum from different projects and to design inverse Q filter, we establish difference equations with an embodiment of Huygens’s principle for obtaining traveltimes corresponding to the multiple arrivals,bring forward a time variable matching filter for seismic datum merging by using the fast algorithm called Mallat tree for wavelet transformations, put forward a method for estimation of residual statics by applying the optimum model parameters estimated by iterative inversion with three organized algorithm,i.e,the CMP intertrace cross-correlation algorithm,the Laplacian image edge extraction algorithm,and the DFP algorithm, and present phase-shift inverse Q filter based on Futterman’s amplitude and phase-velocity dispersion formula and wave field extrapolation theory. All of their numerical and real data calculating results shows that our theory and method are practical and efficient. Key words: prestack depth migration, generalized screen propagator, residual statics,inverse Q filter ,traveltime,3D seismic datum mergence

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the development of petroleum exploration in Gaoyou Depression, both old and new areas have been the active exploration targets, so the study of petroleum accumulation is significant to the petroleum exploration in the study area and the integrated oil and gas accumulation theory. Based on hydrocarbon accumulation theory and systematical research methods and combined with the structural characteristics of Gaoyou Depression, Chenbao and East of Chenbao were selected as the study areas in this dissertation, oil and gas migration pathways, accumulation periods, as well as accumulation models were studied, and favorable exploration targets were proposed. There develop three sets source rocks, which are Tai-2 Member, Fu-2 Member and Fu-4 Member respectively. Tai-2 Member is the predominant source rock in the eastern part. Fu-2 Member mainly occurs in the northern slope, while Fu-4 Member develops in the deep depression. In the study area, oil mainly comes from Fu-2 Member of Liuwushe subsag. The lower limit of TOC is 0.4%, and active source rock mostly distributed in the south fault-step zone. The source rock in Liuwushe subsag began to generate hydrocarbon in the late of Dainan depositional stage and the threshold was 2300m. The macro and micro characteristics of reservoirs and the reservoir heterogeneity characteristics of the Fu-1 Member were studied systematicly. The results show that Fu-1 Member, which has better reservoir properties, are medium porosity-medium permeability reservoir. The reservoir permeability has good correlation with porosity connectivity. The reservoirs have strong dissolution, pores are mainly thin to medium throat, and throat radii are distributed concentratedly, the sorting is good and pore structures are homogeneous. Sandstone reservoirs whether in the plan view, interlayer or in layers have a certain degree of heterogeneity, in particular, the heterogeneity in layers directly affect and control the oil and gas migration and accumulation. By analyzing the lithology correlation of the fault walls, shale smear, cross section stress, the configuration of fracture active periods and hydrocarbon generation and expulsion periods and fuzzy comprehensive evaluation, the main faults sealing were evaluated. The results show that the faults in Chenbao and East of Chenbao had poor sealing properties in Sanduo period and could be used as the migration pathways at that time. After Sanduo period, the tectonic stress fields in the area changed largely, and, consequently, the fault properties converted from tensional shear to compressive shear, the faults changed progressively from close to open, so the faults sealing became better and were conducive to the preservation of oil and gas reservoirs. According to the seismic event suspension modes and profile configurations above and under the unconformities, combined with tectonic evolutions of the study areas, the unconformity types can be classified into truncation unconformity, overlapped unconformity and parallel unconformity and the distribution characteristics of unconformities in the plan view was also studied. The unconformity structure was divided into basal conglomerate, weathered clay and semi-weathered layer vertically in the study area and this kind of structure make unconformities to be effective oil and gas migration pathways and is significant to hydrocarbon accumulation in a parts of areas. With the analyses of typical oil and gas reservoirs in the study area, combined with the research results of pathway systems, hydrocarbon accumulation models were established and the oil and gas accumulation laws in Chenbao and East of Chenbao analyzed. The oil and gas came from Liuwushe subsag and Liuliushe subsag. The oil and gas from Liuwushe subsag mainly migrated from the structural high parts into the fault-step zone along strata in northeast direction, a part of them migrated upward into the fault-step zone and the Wubao low uplift along Wu-1 Fault in northeast direction. The oil and gas from Liuliushe subsag mainly migrated into the upper reservoirs through Wu-2 fault, and lesser oil and gas migrated into the fault-step zone because of the controls of cross-section orientation, depression center and the hydrocarbon formation tendency. The favorable exploration targets in Chenbao and East of Chenbao have been concluded: the southern fault-step zone is a favorable oil and gas accumulation zone of Liuwushe subsag, and they are fault block reservoirs where fault acted as the barriers, the main target intervals are Fu-1 Member and Fu-3 Member in palaeocene; Oil and gas in the middle and northern fault-step zone mainly laterally migrated from the south areas, and the main target interval is Fu-3 Member in palaeocene; Fu-1 Member and the reserviors above the Wubao subsag are still the focuses in future explorations. The results of this study have important guiding significance for the future oil and gas exploration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

I address of reconstruction of spatial irregular sampling seismic data to regular grids. Spatial irregular sampling data impairs results of prestack migration, multiple attenuations, spectra estimation. Prestack 5-D volumes are often divided into sub-sections for further processing. Shot gathers are easy to obtain from irregular sampling volumes. My strategy for reconstruction is as follows: I resort irregular sampling gathers into a form of easy to bin and perform bin regularization, then utilize F-K inversion to reconstruct seismic data. In consideration of poor ability of F-K regularization to fill in large gaps, I sort regular sampling gathers to CMP and proposed high-resolution parabolic Radon transform to interpolate data and extrapolate offsets. To strong interfering noise--multiples, I use hybrid-domain high-resolution parabolic Radon transform to attenuate it. F-K regularization demand ultimately for lower computing costs. I proposed several methods to further improve efficiency of F-K inversion: first I introduce 1D and 2D NFFT algorithm for a rapid calculation of DFT operators; then develop fast 1D and 2D CG method to solve least-square equations, and utilize preconditioner to accelerate convergence of CG iterations; what’s more, I use Delaunay triangulation for weight calculation and use bandlimit frequency and varying bandwidth technique for competitive computation. Numerical 2D and 3D examples are offered to verify reasonable results and more efficiency. F-K regularization has poor ability to fill in large gaps, so I rearrange data as CMP gathers and develop hybrid-domain high-resolution parabolic Radon transforms which be used ether to interpolate null traces and extrapolate near and far offsets or suppress a strong interfere noise: multiples. I use it to attenuate multiples to verify performances of our algorithm and proposed routines for industrial application. Numerical examples and field data examples show a nice performance of our method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the development of seismic exploration, the target becomes more and more complex, which leads to a higher demand for the accuracy and efficiency in 3D exploration. Fourier finite-difference (FFD) method is one of the most valuable methods in complex structure exploration, which keeps the ability of finite-differenc method in dealing with laterally varing media and inherits the predominance of the phase-screen method in stablility and efficiency. In this thesis, the accuracy of the FFD operator is highly improved by using simulated annealing algorithm. This method takes the extrapolation step and band width into account, which is more suitable to various band width and discrete scale than the commonely-used optimized method based on velocity contrast alone. In this thesis, the FFD method is extended to viscoacoustic modeling. Based on one-way wave equation, the presented method is implemented in frequency domain; thus, it is more efficient than two-way methods, and is more convenient than time domain methods in handling attenuation and dispersion effects. The proposed method can handle large velocity contrast and has a high efficiency, which is helpful to further research on earth absorption and seismic resolution. Starting from the frequency dispersion of the acoustic VTI wave equation, this thesis extends the FFD migration method to the acoustic VTI media. Compared with the convetional FFD method, the presented method has a similar computational efficiency, and keeps the abilities of dealing with large velocity contrasts and steep dips. The numerical experiments based on the SEG salt model show that the presented method is a practical migration method for complex acoustical VTI media, because it can handle both large velocity contrasts and large anisotropy variations, and its accuracy is relatively high even in strong anisotropic media. In 3D case, the two-way splitting technique of FFD operator causes artificial azimuthal anisotropy. These artifacts become apparent with increasing dip angles and velocity contrasts, which prevent the application of the FFD method in 3D complex media. The current methods proposed to reduce the azimuthal anisotropy significantly increase the computational cost. In this thesis, the alternating-direction-implicit plus interpolation scheme is incorporated into the 3D FFD method to reduce the azimuthal anisotropy. By subtly utilizing the Fourier based scheme of the FFD method, the improved fast algorithm takes approximately no extra computation time. The resulting operator keeps both the accuracy and the efficiency of the FFD method, which is helpful to the inhancements of both the accuracy and the efficiency for prestack depth migration. The general comparison is presented between the FFD operator and the generalized-screen operator, which is valuable to choose the suitable method in practice. The percentage relative error curves and migration impulse responses show that the generalized-screen operator is much sensiutive to the velocity contrasts than the FFD operator. The FFD operator can handle various velocity contrasts, while the generalized-screen operator can only handle some range of the velocity contrasts. Both in large and weak velocity contrasts, the higher order term of the generalized-screen operator has little effect on improving accuracy. The FFD operator is more suitable to large velocity contrasts, while the generalized-screen operator is more suitable to middle velocity contrasts. Both the one-way implicit finite-difference migration and the two-way explicit finite-differenc modeling have been implemented, and then they are compared with the corresponding FFD methods respectively. This work gives a reference to the choosen of proper method. The FFD migration is illustrated to be more attractive in accuracy, efficiency and frequency dispertion than the widely-used implicit finite-difference migration. The FFD modeling can handle relatively coarse grids than the commonly-used explicit finite-differenc modeling, thus it is much faster in 3D modeling, especially for large-scale complex media.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The problem of oil and gas migration and accumulation have been investigated for many years in petroleum geology field. However, it is still the most weak link. It is a challenge task to research the question about the dynamics of hydrocarbon migration and accumulation. The research area of this article,Chengbei step-fault zone is the important exploration area of Dagang oil field.The oil distribution is complicated in this area because of abundant faults and rock-reservoir-cap assemblage.In recent years, oil shows is often discovered, but no large-scale pool is found. The most important problem influencing exolore decision is lake of kowning about accumulation process of oil and resources potential. According to the geology characteristic and exolore difficult, the analysis principles of dynamics is used in this paper. The course from source to reservoir is considered as main research line, and relation of valid source rcok, migration dynamic and heterogeneous distribution of carrier is discussed especially in key time. By use of numerial model the couling of migration and passage is realized and dynamic process of oil migration is analysed quantitatively. On the basis of other research about structure and sendiment, basin model is built and parameters are choiced. The author has reconstructed characteristic and distribution of fluid dynamical in main pool-forming time by numerical model. The systems of oil migration and acuumulaiton are divided according to distribution of fluid potential. Furthermore, the scope of valid sourece rock and scale of discharging hydrocarbon is studied in geology history by the method of producting hydrocarbon poential. In carrier research, it is outstanding to analyse the function that fault controls the oil-gas migration and accumulation. According to the mechanism of fault sealing, the paper author puts forward a new quantitative method evaluating fault opening and sealing properties-fault connective probability by using the oil and gas shows in footwall and hangwall reservoir as the index of identifying fault sealing or non-sealing. In this method, many influencing factors are considered synthetically. Then the faut sealing propery of different position in third deimention of faults controlling hydrocarbon acummulation are quantitative evaluated, and it laies a foundation for building compex carrier systems. Ten models of carrier and dynamical are establishe by analysis of matching relation of all kinds of carriers in main pool-forming period. The forming process and distribution of main pathway has been studied quantitatively by Buoyancy-Percolation mode, which can conbine valid source rock, migration dynamical and carrier. On the basis of oil-gas migration and accumulation model, the author computes the loss of hydrocarbon in secondary migration, ahead of cap formation, and the quantity of valueless accumulation according to the stage of migration and accumulation and the losing mechamism. At the same time, resource potential is evaluated in every migration and accumulation system. It shows that the quanlity of middle systems arrive to 5.67×108t, which has a huge explore potential prospect. Finally, according to the result of quantitve analysis above mentioned, the favorable explore aims are forcasted by the way of overlapping migration pathway and valid trap and considering factors of pool-forming. The drilling of actual wells proved that the study result is credible. It would offer strong support to optimize explore project in Chengbei step-fault zone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Because of its sensitivity to the velocity discontinuity of the earth, receiver function technique has become a routine procedure used to probe interior structure of the earth. Receiver functions contain anisotropic information of the earth’s interior, however, traditional receiver function techniques such as migration imaging and waveform inversion method, which are based on isotropic media assumption, can not effectively extract the anisotropy information contained in the azimuth variation pattern. Only by using the anisotropic media, e.g. a model with symmetric axis of arbitrary orientation, computing the response, can we obtain the detailed anisotropy information hidden in the radial and transversal receiver function. Focusing on the receiver function variation pattern changing wtih different back azimuths, we introduced different kinds of symmetric systems of seismic anisotropy used often, and summarized some possible causes of anisotropy formation. We show details about how to calculate the response of a stratified anisotropy model with symmetric axis of arbitrary orientation. We also simulated receiver functions among different models and analyzed how the changing of anisotropic parameters influence the azimuth variation pattern of receiver functions. The anisotropy study by receiver function analysis was applied to Taihang Mountain Range (TMR) in North China in this thesis. The maximum entropy spectrum deconvolution technique was used to extract radial and transversal receiver functions from the waveforms of 20 portable seismic stations deployed in TMR. Considering the signal-to-noise ratio and the azimuth coverage, we got the variation pattern of receiver functions for 11 stations. After carefully analyzing the pattern of the receiver functions that we got, we obtained the reliable evidence on the existence of anisotropy in the shallow crust in TMR. Our results show that, although the thickness of the upper crustal layer is only about 1 km, the layer shows a strong anisotropy with magnitude of 8~15%; in the deeper of crust, the magnitudes of anisotropy is about 3%~5%, showing a pattern with fast-symmetric-axis. The crust anisotropy beneath TMR in North China obtained in this study also shows a significant difference in both the lateral and vertical scale, which might imply a regional anisotropy characteristic in the studied region.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As active electromagnetic method, field data of CSAMT method follow the equation of diffusion. Propagting in solid earth media, diffusion EM signal has strong attenuation and dispersion, otherwise seismic wave shows weak attenuation and dispersion, therefore the resolution power of CSAMT method is not better than seismic reflection method. However, there is consistence and similarity between EM signal and seismic wave in wave equation, we can apply Kirchhoff integral migration technique, a proven one in seismic method in time domain, to carry out seduo-seismic processing for CSAMT signal in frequency domain so that the attenuation and dispersion could be made compensated in some extent, and the resolution power and interpretation precision of active EM wave could be improved. Satisfying passive homogeneous Helmholtz quation, we proceed with Green theorem and combine the active inhomogenous Helmholtz quation, the Kirchhoff integral formula could be derived. Given practical problems, if we only consider the surface integral value, and assume that the intergral value in other interface is zero, combined with Green theorem in uniform half space, the expression could be simplified, and we can obtain frequency-domain Kirchhoff integral formula in surface, which is also called downward continuation of EM field in frequency domain. With image conditions and energy compensation considered, in order to get image conditions in time domain Fourier inverse transformation in frequency domain can be performed, so we can formulate the active Kirchhoff integral migration expression. At first, we construct relative stratified model, with different frequency series taken into account, then we change the distances between transmitter and reciever, the EM response can be obtained. Analyzing the EM properties, we can clarify near and far zone that can instruct us to carry out transmitter layout in practical application. Combined with field data surveyed in far zone, We perform Kirchhoff integral migration and compare the results with model to interpret. Secondly, with far field EM data, we apply TM mode to get EM response of given 2D model, then apply Kirchhoff integral migration on modelling data and interpret the results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ray tracing is a rapid and effective method for wave field calculation. Not only in the field of seismic-wave theory, but also in the field of seismic inversion and migration imaging,the seismic ray tracing method has become one of the most important methods. In anisotropic media, group velocity and phase velocity have different propagation directions. The seismic wave propagates along the direction of group velocity , it does not depend on the direction of phase velocity. Ray angle is a complex function with respect to phase angle, it is difficult to measure and calculate. But most rocks are weak anisotropic, so the expression of phase velocity can be simplified greatly. Based on the approximate expression of phase velocity this thesis for rotating axisymmetric weak anisotropic media deduces an expression of the partial derivative of phase velocity and an expression of group velocity with the method of linear approximation. This paper uses the fourth order Runge-Kutta method together with the two-dimensional interpolation and linear interpolation to obtain the parameters of the physical locations. At last the paths of seismic wave in rotating axisymmetric weak anisotropic media are computed. According to the analysis of the computational results, it indicates that the method developed in this paper has strong adaptability, high computational efficiency and high accuracy for rotating axisymmetric weak anisotropic media.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Located in the Central and West African, Chad, which is not well geological explored, is characterized by Mesozoic- Cenozoic intra-continental rift basins. The boreholes exposed that, during Mesozoic-Cenozoic times, volcanic activities were intense in these basins, but study on volcanic rocks is very weak, especially on those embedded in rift basins, and so far systematic and detailed work has still no carried out. Based on the project of China National Oil and Gas Exploration and Development Corporation, “The analysis of reservoir condition and the evaluation of exploration targets of seven basins in block H in Chad”, and the cooperative project between Institute of Geology and Geophysics, CAS and CNPC International (Chad) Co. Ltd., “Chronology and geochemistry studies on Mesozoic-Cenozoic volcanic rocks from southwestern Chad Basins”, systematic geochronology, geochemistry and Sr-Nd-Pb isotopic geochemistry studies on volcanic rocks from southwestern Chad basins have been done in the thesis for the first time. Detailed geochronological study using whole-rock K-Ar and Ar-Ar methods shows the mainly eruption ages of these volcanic rocks are Late Cretaceous- Paleogene. Volcanic rocks in the well Nere-1 and Figuier-1 from Doba basin are products of the Late Cretaceous which majority of the K-Ar (Ar-Ar) ages fall in the interval 95-75 Ma, whereas volcanic rocks in the well Ronier-1 from Bongor Basin and the Well Acacia-1 from Lake Chad Basin formed in the Paleogene which the ages concentrated in 66-52Ma. Two main periods of volcanic activity can be recognized in the study area, namely, the Late Cretaceous period and the Paleogene period. Volcanic activities have a general trend of south to north migration, but this may be only a local expression, and farther future studies should be carried on. Petrology study exhibits these volcanic rocks from southwestern Chad basins are mainly tholeiitic basalt. Major- and trace elements as well as Sr-Nd-Pb isotopic geochemistry studies show that the late Cretaceous and the Paleogene basalts have a definitely genetic relationship, and magmas which the basalts in southwestern Chad basins derived from were produced by fractional crystallization of olivine and clinopyroxene and had not do suffered from crustal contamination. These basalts are prominently enriched light rare earth elements (LREE), large-ion lithophile elements (LILE) and high field strength elements (HFSE) and depleted compatible elements. They have positive Ba, Pb, Sr, Nb, Ta, Zr, Hf anomalies and negative Th, U, P,Y anomalies. It is possible that the basalts from southwestern Chad basins mainly formed by mixing of depleted mantle (DM) and enriched mantle (EMⅡ) sources. The late Cretaceous basalts have higher (87Sr/86Sr)i ratios than the Paleogene basalts’, whereas have lower (143Nd/144Nd)i ratios than the latter, showing a significant temporal evolution. The mantle sources of the Late Cretaceous basalts may have more enriched mantle(EMⅡ) compositions, whereas those of the Paleogene basalts are relatively more asthenospheric mantle (DM) components. The mantle components with temporal change observed in basalts from Chad basins were probably correlated with the asthenospheric mantle upwelling and lithospheric thinning in Central and Western Africa since Mesozoic. Mesozoic- Cenozoic Volcanism in Chad basins probably is a product of intra- plate extensional stress regime, corresponded to the tectonic setting of the whole West and Central African during Cretaceous. Volcanism is closely correlated with rifting. As time passed from early period to late, the basaltic magma of Chad basins, characterized with shallower genetic depth, higher density and smaller viscosity, probably indicates the gradual strengthening evolution of the rifting. In the initial rife stage, volcanic activities are absent in the study area. Volcanic activities are basiccally corresponded with the strong extensional period of Chad basins, and the eruption of basalts was slightly lagged behind the extensional period. In the post-rift stage (30-0Ma), these basins shifted to the thermal sag phase, volcanic activities in the study area significantly decreased and then terminated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tectonic dynamics of metallogenetic fluids is a new crossed subjects among fluid geology, mineral deposit geology and structural geology, and is one of the major current projects of geosciences. It is mainly focused on structures and tectonic dynamic induced by fluid motion, variation of physical condition of fluids (such as temperature and pressure), and interaction between chemical component of fluids and wall rocks in the crust. It takes features of deformation and metamorphysim, which formed during interaction between fluids and rocks and have been perserved in rocks, as basic research objects. After studying types, orders, distributions and fabrics of these features, and analyzing and testing physical and chemical information from these features by some techniques, it is intended to reconstruct moving process of fluids, dynamics of interaction between fluids and rocks, and dynamics of mineralizations. Three problems of tectonic dynamics of metallogenetic fluids, which have not been paid much attentions before, have been studied and discussed in this report. Three relative topics are including: 1)Double-fracturing induced by thermal stress and pressure of fluids and mineralization of Gold-copper in Breccia Pipe at the Qibaoshan in Shandong Province; 2)Parting structures induced by K-metasomatism in the Hougou area, northwestern Heibei province; 3)Migration mechanism of dissolved mass in Fe&S-rich fluids in Hougou gold deposit in Heibei province. After a synthetical study of two years, the author has made some new processes and progresses. The main new advances can be summaried as the following: 1)Thermal stress of fluids formed by temperature difference between fluids and country rock, during upword migration process of fluids with high temperature and pressure, can make rock to break, and some new fractures, which surfaces were uasally dry, formed. The breccia pipe at the Qibaoshan area in Shandong province has some distinct texture of fluidogenous tectonics, the breccia pipe is caused by double-fracturing induced by thermal stress and pressure, distribution of gold-corpper ore bodies are controlled powerfully by fluidogenous tectonics in the breccia pipe. 2)The author discovered a new kind of parting structures in K-alterated rocks in the northwestern part of Hebei province. The parting structures have some distinct geometry and fabrics, it is originated from the acting and reacting fores caused by K-metasomatism. Namely, the crystallizations of metasomatic K-feldspars are a volume expansion process, it would compress the relict fluid bodies, and the pressures in the relict fluid bodies gathered and increased, when the increased pressure of the fluid relict bodies is bigger than the strength of K-feldspars, the K-feldspars were broken with the strong compression, and the parting structures formed. 3)Space position replacing is a important transport pattern of dissolved mass in Fe&S-rich fluid. In addition, basing on views of tectonic dynamics of metallogenic fluids, and time-space texture of fluid-tectonic-lithogenetic-mineralization of the known gold-corpper mineral deposit and the subvolcanic complex at Qibaoshan area in Shandong province, this report does a detail prodict of position-shape-size of two concealed ore-bearing breccia pipe.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The petroleum migration, happening in the geologic past, is the very important and complex dynamic processes in the petroleum systems. It plays a linking role among all static factors in a system. The accumulation is in fact the result of the petroleum migration. For the petroleum geology, the dynamics research of the petroleum migration refers to the mechanism and process research, as well as the use of the quantitative methods. In this thesis, combining with the qualitative analysis and quantitative modeling, the author manages to discuss theoretically some key problems dealing with migration processes, which have not been solved yet, and to apply the studied results in petroleum system analysis in actual basins. The basin analysis offers the base of the numerical modeling for geological phenomena occurring in sedimentary basins, that consists of the sedimentary facies analysis, the section reconstructing technique, eroded thickness estimating, etc. The methods to construct the geologic model, which is needed in the research of oil and gas migration and accumulation, are discussed. The basin analysis offers also the possibility for the latter modeling works to get and select the parameters, such as stratum's thickness, age, stratigraphy etc. Modeling works were done by using two basin modeling softwares: Basin_Mod and TPC_Mod. The role of compaction during the secondary migration and the heterogeneity of migrating paths within the clastic carrier are modeled. And the conclusions were applied in the migration studies in the Jungaer Basin, lying on the Northwest part of the China. To construct a reliable migration model, the author studied the characteristics of the sedimentation, the pore fluid pressure evolution, as well as the distribution and the evolution of fluid potential, following the tectonic evolution of the Jungaer Basin. The geochemical prospecting results were used to evidence and to calibrate the migration processes: the oil-source correlation, the distribution of the properties of oil, gas and water. Finally, two important petroleum systems, Permian one and Jurassic one were studied and identified, according, principally, to the studies on the petroleum migration within the Jungaer Basin. Since the oil, as well as the gas, moves mainly in separate phase during the secondary migration, their migrating behaviors would be determined by the dynamics conditions of migration, including the driving forces and pathways. Based on such a consideration, the further understandings may be acquired: the roles played by permeable carriers and low-permeable source rock would be very different in compaction, overpressure generation, petroleum migration, and so on. With the numerical method, the effect of the compaction on the secondary migration was analyzed and the results show that the pressure gradient and the flux resulted from compaction are so small that could be neglected by comparing to the buoyancy of oil. The main secondary migration driving forces are therefore buoyancy and capillary within a hydrostatic system. Modeling with the commercial software-Basin_Mod, the migration pathways of petroleum in clastic carriers seem to be inhomogeneous, controlled by heterogeneity of the driving force, which in turn resulted from the topography of seals, the fabrics and the capillary pressure of the clastic carriers. Furthermore, the direct and indirect methods to study fault-sealing properties in the course of migration were systemically summarized. They may be characterized directly by lithological juxtaposition, clay smear and diagenesis, and indirectly the comparing the pressures and fluid properties in the walls at two apartments of a fault. In Jungaer Basin, the abnormal pressures are found in the formations beneath Badaowan or Baijantan Formation. The occurrence of the overpressure seems controlled by the stratigraphy. The rapid sedimentation, tectonic pressuring, clay sealing, chemical diagensis were considered as the principal pressuring mechanisms. The evolution of fluid pressure is influenced differently at different parts of the basin by the tectonic stresses. So the basin appears different pressure evolution cycles from each part to another during the geological history. By coupling the results of thermal evolution, pressure evolution and organic matter maturation, the area and the period of primary migration were acquired and used to determine the secondary migration time and range. The primary migration in Fengcheng Formation happened from latter Triassic to early Jurassic in the main depressions. The main period of lower-Wuerhe Formation was at latter Jurassic in Changji, Shawan and Pen-1-jing-xi Depression, and at the end of early Cretaceous in Mahu Depression. The primary migration in Badaowan and Sangonghe Formation is at the end of early-Cretaceous in Changji Depression. After then, the fluid potential of oil is calculated at the key time determined from area and time of the primary migration. Generally, fluid potential of oil is high in the depressions and low at the uplifts. Synthetically, it is recognized that the petroleum migration in the Jungaer Basin is very complex, that leads us to classify the evolution of petroleum systems in Northwestern China as a primary stage and a reformed one. The remigration of accumulated petroleum, caused by the reformation of the basin, results in the generation of multiple petroleum systems. The faults and unconformities are usually the linkers among the original petroleum systems. The Permian petroleum system in Jungaer Basin is such a multiple petroleum system. However, the Jurassic petroleum system stays still in its primary stage, thought the strong influences of the new tectonic activities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Halfgraben-like depressions have multiple layers of subtle traps, multiple coverings of oil-bearing series and multiple types of reservoirs. But these reservoirs have features of strong concealment and are difficult to explore. For this reason, many scholars contribute efforts to study the pool-forming mechanism for this kind of basins, and establish the basis for reservoir exploration and development. However, further study is needed. This paper takes HuiMin depression as an example to study the pool-forming model for the gentle slope belts of fault-depression lake basins. Applying multi-discipline theory, methods and technologies including sedimentary geology, structural geology, log geology, seismic geology, rock mechanics and fluid mechanics, and furthermore applying the dynamo-static data of oil reservoir and computer means in maximum limitation, this paper, qualitatively and quantitatively studies the depositional system, structural framework, structural evolution, structural lithofacies and tectonic stress field, as well as fluid potential field, sealing and opening properties of controlling-oil faults and reservoir prediction, finally presents a pool-forming model, and develops a series of methods and technologies suited to the reservoir prediction of the gentle slope belt. The results obtained in this paper richen the pool-forming theory of a complex oil-gas accumulative area in the gentle slope belt of a continental fault-depression basin. The research work begins with the study of geometric shape of fracture system, then the structural form, activity stages and time-space juxtaposition of faults with different level and different quality are investigated. On the basis of study of the burial history, subsidence history and structural evolution history, this paper synthesizes the studied results of deposition system, analyses the structural lithofacies of the gentle slope belt in the HuiMing Depression and its controlling roles to oil reservoir in the different structural lithofacies belts in time-space, and presents their evolution patterns. The study of structural stress field and fluid potential field indicates that the stress field has a great change from the Dong Ying stages to nowadays. One marked point among them is that the Dong Ying double peak- shaped nose structures usually were the favorable directional area for oil and gas migration, while the QuDi horst became favorable directional area since the GuanTao stage. Based on the active regular of fractures and the information of crude oil saturation pressure, this paper firstly demonstrates that the pool-forming stages of the LingNan field were prior to the stages of the QuDi field, whici provides new eyereach and thinking for hydrocarbon exploration in the gentle slope belt. The BeiQiao-RenFeng buried hill belt is a high value area with the maximum stress values from beginning to end, thus it is a favorable directional area for oil and gas migration. The opening and sealing properties of fractures are studied. The results obtained demonstrate their difference in the hydrocarbon pool formation. The seal abilities relate not only with the quality, direction and scale of normal stress, with the interface between the rocks of two sides of a fault and with the shale smear factor (SSF), but they relate also with the juxtaposition of fault motion stage and hydrocarbon migration. In the HuiMin gentle slope belt, the fault seal has difference both in different stages, and in different location and depth in the same stage. The seal extent also displays much difference. Therefore, the fault seal has time-space difference. On the basis of study of fault seal history, together with the obtained achievement of structural stress field and fluid potential field, it is discovered that for the pool-forming process of oil and gas in the studied area the fault seal of nowadays is better than that of the Ed and Ng stages, it plays an important role to determine the oil column height and hydrocarbon preservation. However, the fault seal of the Ed and Ng stages has an important influence for the distribution state of oil and gas. Because the influential parameters are complicated and undefined, we adopt SSF in the research work. It well reflects synthetic effect of each parameter which influences fault seal. On the basis of the above studies, three systems of hydrocarbon migration and accumulation, as well as a pool-forming model are established for the gentle slope belt of the HuiMin depression, which can be applied for the prediction of regular patterns of oil-gas migration. Under guidance of the pool-forming geological model for the HuiMin slope belt, and taking seismic facies technology, log constraint evolution technology, pattern recognition of multiple parameter reservoir and discrimination technology of oil-bearing ability, this paper develops a set of methods and technologies suited to oil reservoir prediction of the gentle slope belt. Good economic benefit has been obtained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Seismic exploration is the main tools of exploration for petroleum. as the society needs more petroleum and the level of exploration is going up, the exploration in the area of complex geology construction is the main task in oil industry, so the seismic prestack depth migration appeared, it has good ability for complex construction imaging. Its result depends on the velocity model strongly. So for seismic prestack depth migration has become the main research area. In this thesis the difference in seismic prestack depth migration between our country and the abroad has been analyzed in system. the tomographical method with no layer velocity model, the residual curve velocity analysical method based on velocity model and the deleting method in pre-processing have been developed. In the thesis, the tomographysical method in velocity analysis is been analyzed at first. It characterized with perfection in theory and diffculity in application. This method use the picked first arrivial, compare the difference between the picked first arrival and the calculated arrival in theory velocity model, and then anti-projected the difference along the ray path to get the new velocity model. This method only has the hypothesis of high frequency, no other hypothesis. So it is very effective and has high efficiency. But this method has default still. The picking of first arrival is difficult in the prestack data. The reasons are the ratio of signal to noise is very low and many other event cross each other in prestack data. These phenomenon appear strongly in the complex geology construction area. Based on these a new tomophysical methos in velocity analysis with no layer velocity model is been developed. The aim is to solve the picking problem. It do not need picking the event time contiunely. You can picking in random depending on the reliability. This methos not only need the pick time as the routine tomographysical mehtod, but also the slope of event. In this methos we use the high slope analysis method to improve the precision of picking. In addition we also make research on the residual curve velocity analysis and find that its application is not good and the efficiency is low. The reasons is that the hypothesis is rigid and it is a local optimizing method, it can solve seismic velocity problem in the area with laterical strong velocity variation. A new method is developed to improve the precision of velocity model building . So far the pattern of seismic prestack depth migration is the same as it aborad. Before the work of velocity building the original seismic data must been corrected on a datum plane, and then to make the prestack depth migration work. As we know the successful example is in Mexico bay. It characterized with the simple surface layer construction, the pre-precessing is very simple and its precision is very high. But in our country the main seismic work is in land, the surface layer is very complex, in some area the error of pre-precessing is big, it affect the velocity building. So based on this a new method is developed to delete the per-precessing error and improve the precision of velocity model building. Our main work is, (1) developing a effective tomographical velocity building method with no layer velocity model. (2) a new high resolution slope analysis method is developed. (3) developing a global optimized residual curve velocity buliding method based on velocity model. (4) a effective method of deleting the pre-precessing error is developing. All the method as listed above has been ceritified by the theorical calculation and the actual seismic data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The central uplift in the Huimin depression is famous for its large amounts of faults and small-scale fault-block area, and it is the famed typical complicated fault-block group oil & gas field in the whole world. After many years of rolling exploration and exploitation, many complex oil &gas field have been discovered in the central uplift, and won the splendent fruit. With the gradual deepening and development of the rolling exploitation, the exploration faces more and more difficulties. Therefore, it is important to reveal the forming mechanism and distributing rule of the complex fault-block reservoir, and to realize the forecast of the complex fault-block reservoir, sequentially, expedite the exploration step. This article applies the new multi-subject theory, method and technique such as structure geometry, kinematics, dynamics, structural stress field, fluid potential field, well logging record and constrained inversion of seismic records, coherence analysis, the seal mold and seal history of oil-bounded fault etc, and try to reveal the forming mechanism and distributing law of the complex fault-block reservoir, in result, implements the forecast of the fault-block reservoir and the remaining oil distributing. In order to do so, this article synthetically carries out structural estimate, reservoir estimate, fault sealing history estimate, oil-bearing properties estimate and residual. This article also synthetically researches, describes and forecast the complex fault-block in Huimin depression by use of the techniques, e.g. seismetic data post-stack processing technique, multi-component demarcating technique, elaborate description technique for the fault-block structure, technique of layer forecasting, fault sealing analysis technique, comprehensive estimate technique of fault-block, comprehensive analysis and estimate technique of remaining oil etc. The activities of the faults varies dramatically in the Huimin depression, and most of the second-class and the third-class faults are contemporaneous faults, which control the macroscopical distribution of the reservoir in the Huimin depression. The fourth-class faults cause the complication between the oil & gas among the fault-blocks. The multi-period strong activities of the Linyi fracture resulted in the vertical migration of large amount of oil & gas along with the faults. This is the main reason for the long vertical distribution properties near the Linyi fracture in the Huimin depression. The sealing ability of the fault is controlled by the property,size and direction of the main stress, the contact relationship of the both sides of the fault, the shale polluting factor, and the configuration relationship between the fault move period and the migration period of oil & gas. The article suggest four fault-sealing modes in the research zone for the first time, which establishes the foundation for the further forecast of the complex fault-block reservoir. Numerical simulation of the structural stress field reveals the distribution law and the evolvement progress of the three-period stress field from the end of the Dongying period to the Guantao period to nowadays. This article puts forward that the Linyi and Shanghe regions are the low value of the maximum main stress data. This is combined with the fault sealing history estimate, then multi-forming-reservoir in the central uplift is put forward. In the Shanghe oilfield, the article establishes six reservoir geological modes and three remaining oil distributing modes(the plane, the inside layer and the interlayer), then puts forward six increase production measure to enhance the remaining oil recovery ratio. Inducting the exploitation of oilfield, it wins notable economic effects and social effects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Grove Mountains, including 64 nunataks, is situated on an area about 3200km2 in the inland ice cap of east Antarctica in Princess Elizabeth land (72o20'-73°101S, 73°50'-75o40'E), between Zhongshan station and Dome A, about 450km away from Zhongshan station (69°22'S, 76°22'E). Many workers thought there was no pedogenesis in the areas because of the less precipitation and extreme lower temperature. However, during the austral summer in 1999-2000, the Chinaer 16 Antarctic expedition teams entered the inland East Antarctica and found three soil spots in the Southern Mount Harding, Grove Mountains, East Antarctica. It is the first case that soils are discovered in the inland in East Antarctica. Interestingly, the soils in this area show clay fraction migration, which is different from other cold desert soils. In addition, several moraine banks are discovered around the Mount Harding. The soil properties are discussed as below. Desert pavement commonly occurs on the three soil site surfaces, which is composed of pebbles and fragments formed slowly in typical desert zone. Many pebbles are subround and variegated. These pebbles are formed by abrasion caused by not only wind and wind selective transportation, but also salt weathering and thaw-freezing action on rocks. The wind blows the boulders and bedrocks with snow grains and small sands. This results in rock disintegration, paved on the soil surface, forming desert pavement, which protects the underground soil from wind-blow. The desert pavement is the typical feature in ice free zone in Antarctica. There developed desert varnish and ventifacts in this area. Rubification is a dominant process in cold desert Antarctic soils. In cold desert soils, rubification results in relatively high concentrations of Fed in soil profile. Stained depth increases progressively with time. The content of Fed is increasing up to surface in each profile. The reddish thin film is observed around the margin of mafic minerals such as biotite, hornblende, and magnetite in parent materials with the microscope analyzing on some soil profiles. So the Fed originates from the weathering of mafic minerals in soils. Accumulations of water-soluble salts, either as discrete horizons or dispersed within the soil, occur in the soil profiles, and the salt encrustations accumulate just beneath surface stones in this area. The results of X-ray diffraction analyses show that the crystalline salts consist of pentahydrite (MgSO4-5H2O), hexahydrite (MgSO4-6H2O), hurlbutite (CaBe2(PO4)2), bloedite (Na2Mg(S04)2-4H2O), et al., being mainly sulfate. The dominant cations in 1:5 soil-water extracts are Mg2+ and Na+, as well as Ca2+ and K+, while the dominant anion is SO42-, then NO3-, Cl- and HCO3-. There are white and yellowish sponge materials covered the stone underside surface, of which the main compounds are quartz (SiO2, 40.75%), rozenite (FeSOKkO, 37.39%), guyanaite (Cr2O3-1.5H2O, 9.30%), and starkeyite (MgSO4-4H2O, 12.56%). 4) The distribution of the clay fraction is related to the maximum content of moisture and salts. Clay fraction migration occurs in the soils, which is different from that of other cold desert soils. X-ray diffraction analyses show that the main clay minerals are illite, smectite, then illite-smectite, little kaolinite and veirniculite. Mica was changed to illite, even to vermiculite by hydration. Illite formed in the initial stage of weathering. The appearance of smectite suggests that it enriched in magnesium, but no strong eluviation, which belongs to cold and arid acid environment. 5) Three soil sites have different moisture. The effect moisture is in the form of little ice in site 1. There is no ice in site 2, and ice-cement horizon is 12 cm below the soil surface in site 3. Salt horizon is 5-10 cm up to the surface in Site 1 and Site 2, while about 26cm in site 3. The differentiation of the active layer and the permafrost are not distinct because of arid climate. The depth of active layer is about 10 cm in this area. Soils and Environment: On the basis of the characteristics of surface rocks, soil colors, horizon differentiation, salt in soils and soil depth, the soils age of the Grove Mountains is 0.5-3.5Ma. No remnants of glaciations are found on the soil sites of Mount Harding, which suggests that the Antarctic glaciations have not reached the soil sites since at least 0.5Ma, and the ice cap was not much higher than present, even during the Last Glacial Maximum. The average altitude of the contact line of level of blue ice and outcrop is 2050m, and the altitude of soil area is 2160m. The relative height deviation is about 110m, so the soils have developed and preserved until today. The parental material of the soils originated from alluvial sedimentary of baserocks nearby. Sporepollen were extracted from the soils, arbor pollen grains are dominant by Pinus and Betula, as well as a small amount Quercus, Juglans, Tilia and Artemisia etc. Judging from the shape and colour, the sporepollen group is likely attributed to Neogene or Pliocene in age. This indicates that there had been a warm period during the Neogene in the Grove Mountains, East Antarctica.