391 resultados para Stray light crosstalk


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The exponential degradation of the photoluminescence (PL) intensity at the near-band-gap was observed in heavily doped or low-quality GaN with pristine surface under continuous helium-cadmium laser excitation. In doped GaN samples, the degradation speed increased with doping concentration. The oxidation of the surface with laser irradiation was confirmed by x-ray photoemission spectroscopy measurements. The oxidation process introduced many oxygen impurities and made an increase of the surface energy band bending implied by the shift of Ga 3d binding energy. The reason for PL degradation may lie in that these defect states act as nonradiative centers and/or the increase of the surface barrier height reduces the probability of radiative recombination.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ZnO nanocrystals were synthesized by hydrolysis in methanol. X-ray diffraction and photoluminescence spectra confirm that good crystallized ZnO nanoparticles were formed. Utilizing those ZnO nanoparticles and poly [2- methoxy-5 - (3',7'-dimethyloctyloxy)- 1,4-phenylenevinylene] (MDMO-PPV), light emitting devices with indium tin oxide (ITO)/poly(3,4-oxyethyleneoxy-thiophene):poly(styrene sulfonate) (PEDOT:PSS)/ ZnO:MDMO-PPV/Al and ITO/PEDOT:PSS/MDMO-PPV/Al structures were fabricated. Electrolummescence (EL) spectra reveal that EL yield of hybrid MDMO-PPV and ZnO nanocrystals devices increased greatly as compared with pristine MDMO-PPV devices. The current-voltage characteristics indicate that addition of ZnO nanocrystals can facilitate electrical injection and charge transport. The decreased energy barrier to electron injection is responsible for the increased efficiency of electron injection. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Organic light emitting diodes using a mixed layer of electron acceptor 3, 4, 9, 10 perylenetetracarboxylic dianhydride and electron donor copper phthalocyanine (PTCDA:CuPc) on indium tin oxide (ITO) anodes were fabricated. The device properties were found to be strongly dependent on the thickness of the PTCDA:CuPc film: both the power efficiency and the driving voltage of the device were optimized with a thickness of PTCDA:CuPc ranging from 10 to 20 nm. As compared to the conventional ITO/CuPc hole injection structure, the ITO/PTCDA:CuPc hole injection structure could remarkably enhance both the luminance and the power efficiencies of devices. A mechanism of static-induced, very efficient hole-electron pairs generation in mixed PTCDA:CuPc films was proposed to explain the experimental phenomena. The structural and optical properties of PTCDA:CuPc film were examined as well. (c) 2007 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Compared to conjugated polymer poly[2-methoxy-5- (3',7'-dimethyloctyloxy)-1,4-phenylenevinylene] (MDMO-PPV) solar cells, bulk heterojunction solar cells composed of zinc oxide (ZnO) nanocrystals and MDMO-PPV have a better energy conversion efficiency, However, ultraviolet (UV) light deteriorates the performance of solar cells composed of ZnO and MDMO-PPV. We propose a model to explain the effect of UV illumination on these ZnO:MDMO-PPV solar cells. According to this model, the degradation from UV illumination is due to a decrease of exciton dissociation efficiency, Our model is based on the experimental results such as the measurements of current density versus voltage, photoluminescence, and photocurrent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electroluminescence (EL) from AlInGaN-InGaN multiquantum-well violet light-emitting diodes is investigated as a function of forward bias. Two distinct regimes have been identified: 1) quantum-confined Stark effect at low and moderately high forward biases; 2) heating effect at high biases. In the different regimes, the low-temperature EL spectra exhibit different spectral features which are discussed in detail.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Organic light emitting diodes with an interface of organic acceptor 3-, 4-, 9-, 10-perylenetetracarboxylic dianhydride (PTCDA) and donor copper phthalocyanine (CuPc) involved in hole injection are fabricated. As compared to the conventional device using a 5 nm CuPc hole injection layer, the device using an interface of 10 nm PTCDA and 5 rim CuPc layers shows much lower operating voltage with an increase of about 46% in the maximum power efficiency. The enhanced device performance is attributed to the efficient hole generation at the PTCDA/CuPc interface. This study provides a new way of designing hole injection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we analyze light transmission through a single subwavelength slit surrounded by periodic grooves in layered films consisting of An and dielectric material. A subwavelength grating is scanned numerically by the finite difference time domain method in two dimensions. The results show that the transmission field can be confined to a spot with subwavelength width in the far field and can be useful in the application of a high-resolution far-field scanning optical microscope.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Metamorphic InGaAs quantum well structures grown on GaAs reveal strong light emission at 1.3-1.6 mu m, smooth surface with an average roughness below 2 nm. and good rectifying I-V characteristics. Dark line defects are found in the QW Post growth thermal annealing further improves the luminescence efficiency but does not remove those dark line defects. Some challenges of epitaxial growth using this method for laser applications are discussed. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two silicon light emitting devices with different structures are realized in standard 0.35 mu m complementary metal-oxide-semiconductor (CMOS) technology. They operate in reverse breakdown mode and can be turned on at 8.3 V. Output optical powers of 13.6 nW and 12.1 nW are measured at 10 V and 100 mA, respectively, and both the calculated light emission intensities are more than 1 mW/Cm-2. The optical spectra of the two devices are between 600-790 nm with a clear peak near 760 nm..

Relevância:

20.00% 20.00%

Publicador:

Resumo:

National Natural Science Foundation of China 60677045 60876049

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-performance violet light-emitting diodes (LEDs) with InGaN/AlInGaN multiple quantum well (MQW) active regions were grown by metal organic chemical vapor deposition (MOCVD). The interface flatness of the InGaN/AlInGaN MQWs and the emission efficiency of the LED are firstly improved with increasing Al content in the AlInGaN barrier layer, and then degraded as Al content increases further, being optimal when Al content is 0.12. Similarly, the result is optimized if the indium content is approximately 2.5% in the AlInGaN barrier layer. The mechanisms which have influences on the radiative efficiency when the Al content increases are discussed. A high output power of 7.3 mW for the violet LED at 20 mA current has been achieved. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Straight single-line defect optical waveguides in photonic crystal slabs are designed by the plane wave expansion method and fabricated into silicon-on-insulator (SOI) wafer by 248-nm deep UV lithography. We present an efficient way to measure the light transmission spectrum of the photonic crystal waveguide (PhC WG) at given polarization states. By employing the Mueller/Stokes method, we measure and analyse the light propagation properties of the PhC WG at different polarized states. It is shown that experimental results are in agreement with the simulation results of the three-dimensional finite-difference-time-domain method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of diphasic nanocrystalline silicon films and solar cells was prepared using different hydrogen dilution ratios of silane by very high frequency plasma enhanced chemical vapor deposition (VHF-PECVD). It was observed that after light soaking the open circuit voltage (V-oc) of the diphasic solar cells increased, while that of amorphous silicon solar cells decreased. Raman scattering spectroscopy was performed on the series of diphasic silicon films before and after light soaking. It was found that after light soaking the nanostruclures in the diphasic nanocrystalline silicon films were changed. Both the grain sizes and grain volume fraction reduced, while the grain boundary components increased. These results provide experimental evidence for the conjecture that the light-induced increase in V-oc of the diphasic nanocrystalline solar cells might be induced by the changes in the nanostructure of the intrinsic layer. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Heterojunction phototransistors (HPTs) with several Ge/Si nano-dot layers as the absorption region are fabricated to obtain improved light detectivity at 1.55 mu m. The HPT detectors are of n-p-n type with ten layers of Ge(8ML)/Si(45nm) incorporated in the base-collector junction and are grown by an ultrahigh-vacuum chemical-vapor deposition system. The detectors are operated with normal incidence. Because of the good quality of the grown material and fabrication process, the dark current is only 0.71pA/mu m(2) under 5 V bias and the break-down voltage is over 20 V. Compared to the positive-intrinsic-negative (PIN) reference detector with the same absorption layer, the responsivity is improved over 17 times for normal incidence at 1.55 mu m.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, a novel light source of strained InGaAsP/InGaAsP MQW EAM monolithically integrated with DFB laser is fabricated by ultra-low-pressure (22 x 10(2) Pa) selective area growth ( SAG) MOCVD technique. Superior device performances have been obtained, sue h as low threshold current of 19 mA, output light power of about 7 mW, and over 16 dB extinction ratio at 5 V applied voltage when coupled into a single mode fiber. Over 10 GHz 3 dB bandwidth in EAM part is developed with a driving voltage of 3 V. After the chip is packaged into a 7-pin butterfly compact module, 10-Gb/s NRZ transmission experiments are successfully performed in standard fiber. A clearly-open eye diagram is achieved in the module output with over 8.3 dB dynamic extinction ratio. Power penalty less than 1.5 dB has been obtained after transmission through 53.3 km of standard fiber, which demonstrates that high-speed, low chirp EAM/DFB integrated light source can be obtained by ultra-low-pressure (22 x 102 Pa) SAG method.