177 resultados para Quantum Entanglement
Resumo:
1689-nm diode lasers used in medical apparatus have been fabricated and characterized. The lasers had pnpn InP current confinement structure, and the active region consisted of 5 pairs of InGaAs quantum wells and InGaAsP barriers. Stripe width and cavity length of the laser were 1.8 and 300 pm, respectively. After being cavity coated. and transistor outline (TO) packaged, the lasers showed high performance in practice. The threshold current was about 13 +/- 4 mA, the operation current and the lasing spectrum were about 58 6 mA and 1689 +/- 6 nm at 6-mW output power, respectively. Moreover, the maximum output power of the lasers was above 20 mW.
Resumo:
We theoretically investigate the Rashba spin-orbit interaction in InAs/GaSb quantum wells (QWs). We find that the Rashba spin-splitting (RSS) sensitively depends on the thickness of the InAs layer. The RSS exhibits nonlinear behavior for narrow InAs/GaSb QWs and the oscillating feature for wide InAs/GaSb QWs. The nonlinear and oscillating behaviors arise from the weakened and enhanced interband coupling. The RSS also show asymmetric features respect to the direction of the external electric field. (C) 2008 American Institute of Physics.
Resumo:
Field electron emission (FE) from an ultrathin multilayer planar cold cathode (UMPC) including a quantum well structure has been both experimentally and theoretically investigated. We found that by tuning the energy levels of UMPC, the FE characteristic can be evidently improved, which is unexplained by conventional FE mechanism. FE emission mechanism, dependent on the quantum structure effect, which supplies a favorable location of electron emission and enhances tunneling ability, has been presented to expound the notable amelioration. An approximate formula, brought forward, can predict the quantum FE enhancement, in which the theoretical prediction is close to the experimental result. (C) 2008 American Institute of Physics.
Resumo:
The Rashba spin splitting of the minibands of coupled InAs/GaAs pyramid quantum dots is investigated using the k center dot p method and valence force field model. The Rashba splitting of the two dimensional miniband in the lateral directions is found due to the structure inversion asymmetry in the vertical direction while the miniband in the vertical direction has no Rashba spin splitting. As the space between dots increases, the Rashba coefficients decrease and the conduction-band effective mass increases. This Rashba spin splitting of the minibands will significantly affect the spin transport properties between quantum dots. (C) 2008 American Institute of Physics.
Resumo:
Magnetotransport properties of two-dimensional electron gas have been investigated for three In0.53Ga0.47As/In0.52Al0.48As quantum well samples having two occupied subbands with different well widths. When the intersubband scattering is considered, we have obtained the subband density, transport scattering time, quantum scattering time and intersubband scattering time, respectively, by analyzing the result of fast Fourier transform of the first derivative of Shubnikov-de Haas oscillations. It is found that the main scattering mechanism is due to small-angle scattering, such as ionized impurity scattering, for the first subband electrons.
Resumo:
We investigated the transmission probability of a single electron transmission through a quantum ring device based on the single-band effective mass approximation method and transfer matrix theory. The time-dependent Schrodinger equation is applied on a Gaussian wave packet passing through the quantum ring system. The electron tunneling resonance peaks split when the electron transmits through a double quantum ring. The splitting energy increases as the distance between the two quantum rings decreases. We studied the tunneling time through the single electron transmission quantum ring from the temporal evolution of the Gaussian wave packet. The electron probability density is sensitive to the thickness of the barrier between the two quantum rings. (C) 2008 American Institute of Physics.
Resumo:
Considering tensile-strained p-type Si/Si1-yGey quantum wells grown on a relaxed Si1-xGex ( 0 0 1) virtual substrate ( y < x), the hole subband structure and the effective masses of the first bound hole state in the quantum wells are calculated by using the 6 x 6 k center dot p method. Designs for tensile-strained p-type quantum well infrared photodetectors ( QWIPs) based on the bound-to-quasi-bound transitions are discussed, which are expected to retain the ability of coupling normally incident infrared radiation without any grating couplers, have lower dark current than n-type QWIPs and also have a larger absorption coefficient and better transport characteristics than normal unstrained or compressive-strained p-type QWIPs.
Resumo:
Doping difficulty in semiconductor nanocrystals has been observed and its origin is currently under debate. It is not clear whether this phenomenon is energetic or depends on the growth kinetics. Using first-principles method, we show that the transition energies and defect formation energies of the donor and acceptor defects always increase as the quantum dot sizes decrease. However, for isovalent impurities, the changes of the defect formation energies are rather small. The origin of the calculated trends is explained using simple band-energy-level models.
Resumo:
We report a photoluminescence (PL) energy red-shift of single quantum dots (QDs) by applying an in-plane compressive uniaxial stress along the [110] direction at a liquid nitrogen temperature. Uniaxial stress has an effect not only on the confinement potential in the growth direction which results in the PL shift, but also on the cylindrical symmetry of QDs which can be reflected by the change of the full width at half maximum of PL peak. This implies that uniaxial stress has an important role in tuning PL energy and fine structure splitting of QDs.
Resumo:
We develop a modified two-step method of growing high-density and narrow size-distribution InAs/GaAs quantum dots (QDs) by molecular beam epitaxy. In the first step, high-density small InAs QDs are formed by optimizing the continuous deposition amount. In the second step, deposition is carried out with a long growth interruption for every 0.1 InAs monolayer. Atomic force microscope images show that the high-density (similar to 5.9x 10(10) CM-2) good size-uniformity InAs QDs are achieved. The strong intensity and narrow linewidth (27.7 meV) of the photoluminescence spectrum show that the QDs grown in this two-step method have a good optical quality.
Resumo:
Finite difference time domain (FDTD) method is used for the simulation and analysis of electromagnetic field in the top coupling layer of GaAs/AlGaAs quantum well infrared photodetector (QWIP). Simulation results demonstrated the coupling efficiencies and distributions of electromagnetic (EM) field in a variety of 2D photonic crystal coupling layer structures. A photonic crystal structure for bi-color-QWIP is demonstrated with high coupling efficiency for two wavelengths.
Resumo:
We have investigated the steady-state and transient optical properties of InGaAs/GaAs quantum chains and found that the photoluminescence (PL) decay time exhibits a strong photon energy dependence. It increases with the decrease of the emission energy. It is also found that the PL decay time increases with the excitation power. When the excitation power is large enough the PL decay time tends to be saturated. All these experimental results show that there is a strong carrier coupling along the chain direction in the quantum dot chain structure. The polarization PL measurements further confirm the carrier transfer process along the chain direction.
Resumo:
We investigate theoretically the electron-hole pair states in CdTe quantum dot (QD) containing a single Mn2+ ion by the magneto-optical spectrum tuned by the electric field. It is shown that the electric field does not only tune the spin splitting via the sp-d exchange interaction but also affect significantly the anticrossing behavior in the photoluminescence spectrum. This anticrossing is caused by the s-d exchange interaction and/or the hole mixing effect, which depends sensitively on the shape of the QD. (C) 2008 American Institute of Physics.
Resumo:
In this paper, how the dots' radius, At concentration and external electric field affect the single electron energy states in GaAs/AlxGa1-xAs spherical quantum dots are discussed in detail. Furthermore, the modification of the energy states is calculated when the difference in effective electron mass in GaAs and AlxGa1-xAs are considered. In addition, both the analytical method and the plane wave method are used in calculation and the results are compared, showing that they are in good agreement with each other. The results and methods can provide useful information for the future research and potential applications of quantum dots.
Resumo:
The spin Hall effect can be induced by both extrinsic impurity scattering and intrinsic spin-orbit coupling in the electronic structure. The HgTe/CdTe quantum well has a quantum phase transition where the electronic structure changes from normal to inverted. We show that the intrinsic spin Hall effect of the conduction band vanishes on the normal side, while it is finite on the inverted side. By tuning the Cd content, the well width, or the bias electric field across the quantum well, the intrinsic spin Hall effect can be switched on or off and tuned into resonance under experimentally accessible conditions.