319 resultados para Phase change films
Resumo:
用电子束蒸发法制备出四种不同Y2O3含量的Y2O3稳定ZrO2(YSZ)薄膜,用X射线衍射和透射光谱测定薄膜的结构和光学性能.结果表明:随着Y2O3含量的增加,ZrO2薄膜从单斜相向高温相(四方相和立方相)转变,获得了结构稳定的YSZ薄膜;YSZ薄膜的晶粒尺寸都比ZrO2薄膜的大,但随着Y2O3加入量的增加,晶粒尺寸有减小的趋势,薄膜表面也趋向光滑平整.所有YSZ薄膜的透射谱线都与ZrO2薄膜相似,在可见光和红外光区都有较高的透过率.Y2O3的加入还可以改变薄膜的折射率,在一定范围内可得到所需的任意折射率
Resumo:
Zirconium dioxide (ZrO2) thin films were deposited on BK7 glass substrates by the electron beam evaporation method. A continuous wave CO2 laser was used to anneal the ZrO2 thin films to investigate whether beneficial changes could be produced. After annealing at different laser scanning speeds by CO2 laser, weak absorption of the coatings was measured by the surface thermal lensing (STL) technique, and then laser-induced damage threshold (LIDT) was also determined. It was found that the weak absorption decreased first, while the laser scanning speed is below some value, then increased. The LIDT of the ZrO2 coatings decreased greatly when the laser scanning speeds were below some value. A Nomarski microscope was employed to map the damage morphology, and it was found that the damage behavior was defect-initiated both for annealed and as-deposited samples. The influences of post-deposition CO2 laser annealing on the structural and mechanical properties of the films have also been investigated by X-ray diffraction and ZYGO interferometer. It was found that the microstructure of the ZrO2 films did not change. The residual stress in ZrO2 films showed a tendency from tensile to compressive after CO, laser annealing, and the variation quantity of the residual stress increased with decreasing laser scanning speed. The residual stress may be mitigated to some extent at proper treatment parameters. (c) 2007 Elsevier GmbH. All rights reserved.
Resumo:
This paper describes the preparation and the characterization Of Y2O3 stabilized ZrO2 thin films produced by electric-beam evaporation method. The optical properties, microstructure, surface morphology and the residual stress of the deposited films were investigated by optical spectroscopy, X-ray diffraction (XRD), scanning probe microscope and optical interferometer. It is shown that the optical transmission spectra of all the YSZ thin films are similar with those of ZrO2 thin film, possessing high transparency in the visible and near-infrared regions. The refractive index of the samples decreases with increasing of Y2O3 content. The crystalline structure of pure ZrO2 films is a mixture of tetragonal phase and monoclinic phase, however, Y2O3 stabilized ZrO2 thin films only exhibit the cubic phase independently of how much the added Y2O3 content is. The surface morphology spectrum indicates that all thin films present a crystalline columnar texture with columnar grains perpendicular to the substrate and with a predominantly open microporosity. The residual stress of films transforms tensile from compressive with the increasing Of Y2O3 molar content, which corresponds to the evolutions of the structure and packing densities. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Ta2O5 films were deposited by conventional electron beam evaporation method and then annealed in air at different temperature from 873 to 1273 K. It was found that the film structure changed from amorphous phase to hexagonal phase when annealed at 1073 K, then transformed to orthorhombic phase after annealed at 1273 K. The transmittance was improved after annealed at 873 K, and it decreased as the annealing temperature increased further. The total integrated scattering (TIS) tests and AFM results showed that both scattering and root mean square (RMS) roughness of films increased with the annealing temperature increasing. X-ray photoelectron spectroscopy (XPS) analysis showed that the film obtained better stoichiometry and the O/Ta ratio increased to 2.50 after annealing. It was found that the laser-induced damage threshold (LIDT) increased to the maximum when annealed at 873 K, while it decreased when the annealing temperature increased further. Detailed damaged models dominated by different parameters during annealing were discussed. (C) 2008 Elsevier B. V. All rights reserved.
Resumo:
Ta2O5 films are deposited on fused silica substrates by conventional electron beam evaporation method. By annealing at different temperatures, Ta2O5 films of amorphous, hexagonal and orthorhombic phases are obtained and confirmed by x-ray diffractometer ( XRD) results. X-ray photoelectron spectroscopy ( XPS) analysis shows that chemical composition of all the films is stoichiometry. It is found that the amorphous Ta2O5 film achieves the highest laser induced damage threshold ( LIDT) either at 355 or 1064 nm, followed by hexagonal phase and finally orthorhombic phase. The damage morphologies at 355 and 1064 nm are different as the former shows a uniform fused area while the latter is centred on one or more defect points, which is induced by different damage mechanisms. The decrease of the LIDT at 1064nm is attributed to the increasing structural defect, while at 355nm is due to the combination effect of the increasing structural defect and decreasing band gap energy.
Resumo:
As a technique to improve the ability of optical films to resist laser-induced damage (ARLID), laser preconditioning has been investigated broadly. In this paper, the laser preconditioning effect has been analyzed based on the defect-initialized damage mechanism that the author had put forward previously. Theoretical results show that an energy density scope (PEDS) exists in which the preconditioning laser can effectively improve the ARLID of optical films. In addition, when the energy density of the testing laser pulse is altered, the boundary of PEDS will change accordingly. Experimental results have verified these theoretical assumptions. PEDS will also become wider if the critical energy density of the preconditioning laser that can induce films' micro-damage increases, or the critical energy density of the preconditioning laser that can cause laser annealing decreases. In these cases, it is relatively easy to improve the ARLID of optical films. Results of the current work show great significance in enhancing the ARLID of optical films through the laser preconditioning technique. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
We report variations in structure and magnetic property of (Ga,Cr) As films with increasing Cr content x. Due to phase segregation, a tendency towards inhomogeneous distribution with increasing x is confirmed. Barkhausen-like magnetization and large remanent magnetic moment were also clearly observed in the samples with x<5.3%. However, spin-glass-like behaviors were observed in both dc and ac magnetic measurements, which might originate from the competition between magnetic nucleation and frustration of long ferromagnetic order in this inhomogeneous system. All the samples exhibit characteristics of variable-range hopping conductivity at temperature below 150 K. Typical magnetic circular dichroism structure was observed in the sample with x=7.9%.
Resumo:
A giant magnetocaloric effect was found in series of Mn1-xCoxAs films epitaxied on GaAs (001). The maximum magnetic entropy change caused by a magnetic field of 4 T is as large as 25 J/kg K around room temperature, which is about twice the value of pure MnAs film. The observed small thermal hysteresis is more suitable for practical application. Growing of layered Mn1-xCoxAs films with Co concentration changing gradually may draw layered active magnetic regenerator refrigerators closer to practical application. Our experimental result may provide the possibility for the combination of magnetocaloric effect and microelectronic circuitry.
Resumo:
Er/Bi codoped SiO2 thin films were prepared by sol-gel method and spin-on technology with subsequent annealing process. The bismuth silicate crystal phase appeared at low annealing temperature while vanished as annealing temperature exceeded 1000 degrees C, characterized by X-ray diffraction, and Rutherford backscattering measurements well explained the structure change of the films, which was due to the decrease of bismuth concentration. Fine structures of the Er3+-related 1.54 mu m light emission (line width less than 7 nm) at room temperature was observed by photoluminescence (PL) measurement. The PL intensity at 1.54 gm reached maximum at 800 degrees C and decreased dramatically at 1000 degrees C. The PL dependent annealing temperature was studied and suggested a clear link with bismuth silicate phase. Excitation spectrum measurements further reveal the role of Bi3+ ions for Er3+ ions near infrared light emission. Through sol-gel method and thermal treatment, Bi3+ ions can provide a perfect environment for Er3+ ion light emission by forming Er-Bi-Si-O complex. Furthermore, energy transfer from Bi3+ ions to Er3+ ions is evidenced and found to be a more efficient way for Er3+ ions near infrared emission. This makes the Bi3+ ions doped material a promising application for future erbium-doped waveguide amplifier and infrared LED
Resumo:
In this Letter, the classical two-site-ground-state fidelity (CTGF) is exploited to identify quantum phase transitions (QPTs) for the transverse field Ising model (TFIM) and the one-dimensional extended Hubbard model (EHM). Our results show that the CTGF exhibits an abrupt change around the regions of criticality and can be used to identify QPTs in spin and fermionic systems. The method is especially convenient when it is connected with the density-matrix renormalization group (DMRG) algorithm. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The Berry phase of a bipartite system described by a Heisenberg XXZ model driven by a one-site magnetic field is investigated. The effect of the Dzyaloshinski-Moriya (DM) anisotropic interaction on the Berry phase is discussed. It is found that the DM interaction affects the Berry phase monotonously. and can also cause sudden change of the Berry phase for some weak magnetic field cases. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Diluted magnetic nonpolar GaN:Mn films have been fabricated by implanting Mn ions into unintentionally doped nonpolar a-plane (1 1 (2) over bar 0) GaN films with a subsequent rapid thermal annealing (RTA) process. The structure, morphology and magnetic characteristics of the samples were investigated by means of high-resolution x-ray diffraction (XRD), atomic force microscopy (AFM) and a superconducting quantum interference device (SQUID), respectively. The XRD analysis shows that the RTA process can effectively recover the crystal deterioration caused by the implantation process and that there is no obvious change in the lattice parameter for the as-annealed sample. The SQUID result indicates that the as-annealed sample shows ferromagnetic properties and magnetic anisotropy at room temperature.
Resumo:
Field emissions (FE) from La-doped zinc oxide (ZnO) films are both experimentally and theoretically investigated. Owing to the La-doped effect, the FE characteristic of ZnO films is remarkably enhanced compared with an undoped sample, and a startling low turn-on electric field of about 0.4 V/mu m (about 2.5 V/mu m for the undoped ZnO films) is obtained at an emission current density of 1 mu A/cm(2) and the stable current density reaches 1 mA/cm(2) at an applied field of about 2.1 V/mu m. A self-consistent theoretical analysis shows that the novel FE enhancement of the La-doped sample may be originated from its smaller work function. Due to the effect of doping with La, the Fermi energy level lifts, electrons which tunnelling from surface barrier are consumedly enhancing, and then leads to a huge change of field emission current. Interestingly, it suggests a new effective method to improve the FE properties of film materials.
Resumo:
Crack-free GaN films have been achieved by inserting an Indoped low-temperature (LT) AlGaN interlayer grown on silicon by metalorganic chemical vapor deposition. The relationship between lattice constants c and a obtained by X-ray diffraction analysis shows that indium doping interlayer can reduce the stress in GaN layers. The stress in GaN decreases with increasing trimethylindium (TMIn) during interlayer growth. Moreover, for a smaller TMIn flow, the stress in GaN decreases dramatically when In acts as a surfactant to improve the crystallinity of the AlGaN interlayer, and for a larger TMIn flow, the stress will increase again. The decreased stress leads to smoother surfaces and fewer cracks for GaN layers by using an In-doped interlayer than by using an undoped interlayer. In doping has been found to enhance the lateral growth and reduce the growth rate of the c face. It can explain the strain relief and cracks reduction in GaN films. (C) 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
Thick GaN films of high quality are directly grown on wet-etching patterned sapphire in a vertical hydride vapour phase epitaxy reactor. The optical and structural properties of GaN films are studied using scanning electronic microscopy and cathodoluminescence. Test results show that initial growth of hydride vapour phase epitaxy GaN occurs not only on the mesas but also on the two asymmetric sidewalls of the V-shaped grooves without selectivity. After the two-step coalescence near the interface, the GaN films near the surface keep on growing along the direction perpendicular to the long sidewall. Based on Raman results, GaN of the coalescence region in the grooves has the maximum residual stress and poor crystalline quality over the whole GaN film, and the coalescence process can release the stress. Therefore, stress-free thick GaN films are prepared with smooth and crack-free surfaces by this particular growth mode on wet-etching patterned sapphire substrates.