203 resultados para NONUNIFORM EXTINCTION
Resumo:
In2O3 films grown by helicon magnetron sputtering with different thicknesses were characterized by spectroscopic ellipsometry in the energy range from 1.5 to 5.0 eV. Aside from one amorphous sample prepared at room substrate temperature, polycrystalline In2O3 films with cubic crystal structure were confirmed for other four samples prepared at the substrate temperature of 450 A degrees C. Excellent SE fittings were realized by applying 1 and/or 2 terms F&B amorphous formulations, building double layered film configuration models, and further taking account of void into the surface layer based on Bruggeman effective medium approximation for thinner films. Spectral dependent refractive indices and extinction coefficients were obtained for five samples. The curve shapes were well interpreted according to the applied dispersion formulas. Almost similar optical band gap values from 3.76 to 3.84 eV were obtained for five samples by Tauc plot calculation using extinction coefficients under the assumption of direct allowed optical transition mode.
Resumo:
We show that bright-dark vector solitons are possible in biased photorefractive-photovoltaic crystals under steady-state conditions, which result from both the bulk photovoltaic effect and the spatially nonuniform screening of the external bias field. The analytical solutions of these vector solitons can be obtained in the case of \sigma\ much less than 1, where sigma is the parameter controlling the intensities of the two optical beams. In the limit of -1 < sigma much less than 1, these vector solitons can also be determined by use of simple numerical integration procedures. When the bulk photovoltaic effect is neglectable, these vector solitons are bright-dark vector screening solitons studied previously in the \sigma\ much less than 1 regime, and predict bright-dark vector screening solitons in the -1 < sigma less than or equal to 1 regime. When the external bias field is absent, these vector solitons predict bright-dark vector photovoltaic solitons in closed and open circuits. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
A novel dual-wavelength (DW) sampled fiber Bragg grating (SFBG) is proposed and demonstrated for the first time to the author's best knowledge. This kind of SFBG can realize a DW operation with uniform reflection peaks rather than multiple nonuniform peaks shown in conventional SFBGs. Based on the designed SFBG, we have proposed a novel L-band DW erbium-doped fiber laser, which has such a unique merit that the spacing of the two wavelengths keeps unchanged during tuning laser.
Resumo:
The genus Yunnanilus Nichols, 1925 is revised; Eonemachilus Berg, 1938 is a junior subjective synonym. Yunnanilus includes at least nine described species and five undescribed species. The status of Y; salmonides Chaudhuri is still incertae sedis. Six new species are described: Y. parvus, Y: altus, Y; pachycephalus, X niger, Y. macrogaster and Y. paludosus. The last three species occur sympatrically in a small endorheic basin of eastern Yunnan; they developed different feeding specializations which allowed them to use different niches. Other species also have peculiar specializations. The diversity of feeding habits and related adaptations in Yunnanilus is greater than in the whole subfamily Nemacheilinae and is one more example of supralimital specialization. Speciation of fishes on the Yunnan Plateau is discussed. Several species are endangered or possibly extinct. Introduction
Resumo:
We report the experimental result of all-optical passive 3.55 Gbit/s non-return-to-zero (NRZ) to pseudo-return-to-zero (PRZ) format conversion using a high-quality-factor (Q-factor) silicon-based microring resonator notch filter on chip. The silicon-based microring resonator has 23800 Q-factor and 22 dB extinction ratio (ER), and the PRZ signals has about 108 ps width and 4.98 dB ER.
Resumo:
A 100-μm-long electroabsorption modulator monolithically integrated with passive waveguides at the input and output ports is fabricated through ion implantation induced quantum well intermixing, using only a two-step low-pressure metal-organic vapor phase epitaxial process. An InGaAsP/InGaAsP intra-step quantum well is introduced to the active region to improve the modulation properties. In the experiment high modulation speed and high extinction ratio are obtained simultaneously, the electrical-to-optical frequency response (E/O response) without any load termination reaches to 22 GHz, and extinction ration is as high as 16 dB.
Resumo:
A polarization-maintaining (PM) fiber Mach-Zehnder (MZ) interferometer has been established to measure the EO effect of very thin film materials with optical anisotropy. Unlike a common MZ interferometer,all the components are connected via polarization-maintaining fibers. At the same time, a polarized DFB laser with a maximum power output of 10mW is adopted as the light source to induce a large extinction ratio. Here, we take it to determine the electro-optical coefficients of a very thin superlattice structure with GaAs, KTP, and GaN as comparative samples. The measured EO coefficients show good comparability with the others.
Resumo:
A novel integration technique has been developed using band-gap energy control of InGaAsP/InGaAsP multiquantum-well (MQW) structures during simultaneous ultra-low-pressure (22 mbar) selective-area-growth (SAG) process in metal-organic chemical vapour deposition. A fundamental study of the controllability of band gap energy by the SAG method is performed. A large band-gap photoluminescence wavelength shift of 83nm is obtained with a small mask width variation (0-30μm). The method is then applied to fabricate an MQW distributed-feedback laser monolithically integrated with an electroabsorption modulator. The experimental results exhibit superior device characteristics with low threshold of 19mA, over 24 dB extinction ratio when coupled into a single mode fibre. More than 10 GHz modulation bandwidth is also achieved, which demonstrates that the ultra-low-pressure SAG technique is a promising approach for high-speed transmission photonic integrated circuits.
Resumo:
A two-section offset quantum-well structure tunable laser with a tuning range of 7 nm was fabricated using offset quantum-well inethod. The distributed Bragg reflector (DBR) was realized just by selectively wet etching the multiquantum-well (MQW) layer above the quaternary lower waveguide. A threshold current of 32 mA and an output power of 9 mW at 100 mA were achieved. Furthermore, with this offset structure method, a distributed feedback (DFB) laser was integrated with an electro-absorption modulator (EAM), which was capable of producing 20 dB of optical extinction.
Resumo:
We report a wavelength tunable electro-absorption modulated DBR laser based on a combined method of SAG and QWI. The threshold current is 37mA and the output power at 100mA gain current is 3.5mW. When coupled to a single-mode fiber with a coupling efficiency of 15% ,more than a 20dB extinction ratio is observed over the change of EAM bias from 0 to -2V. The 4.4nm continuous wavelength tuning range covers 6 channels on a 100GHz grid for WDM telecommunications.
Resumo:
A semiconductor optical amplifier and electroabsorption modulator monolithically integrated with a spotsize converter input and output is fabricated by means of selective area growth,quantum well intermixing,and asymmetric twin waveguide technology. A 1550-1600nm lossless operation with a high DC extinction ratio of 25dB and more than 10GHz 3dB bandwidth are successfully achieved. The output beam divergence angles of the device in the horizontal and vertical directions are as small as 7.3°× 18.0°, respectively, resulting in a 3.0dB coupling loss with a cleaved single-mode optical fiber.
Resumo:
This paper reports on the design, fabrication, and performance of an integrated electro-absorptive modulated laser based on butt-joint configuration for 10Gbit/s application. This paper mainly aims at two aspects. One is to improve the optical coupling between the laser and modulator; another is to increase the bandwidth of such devices by reducing the capacitance parameter of the modulator. The integrated devices exhibit high static and dynamic characteristics. Typical threshold current is 15mA,with some value as low as 8mA. Output power at 100mA is more than 10mW. The extinction characteristics,modulation bandwidth, and electrical return loss are measured. 3dB bandwidth more than 10GHz is monitored.
Resumo:
A 1.60μm laser diode and electroabsorption modulator monolithically integrated with a novel dualwaveguide spot-size converter output for low-loss coupling to a cleaved single-mode optical fiber are demonstrated.The devices emit in a single transverse and quasi single longitudinal mode with an SMSR of 25.6dB. These devices exhibit a 3dB modulation bandwidth of 15. 0GHz, and modulator DC extinction ratios of 16.2dB. The output beam divergence angles of the spot-size converter in the horizontal and vertical directions are as small as 7. 3°× 18. 0°,respectively, resulting in a 3. 0dB coupling loss with a cleaved single-mode optical fiber.
Resumo:
An improved butt coupling method is used to fabricate an electroabsorption modulator (EAM) monolithically integrated with a distributed feedback (DFB) laser. The obtained electroabsorption-modulated laser (EML) chip with the traditional shallow ridge exhibits very low threshold current of 12 mA, output power of more than 8 mW, and static extinction ratio of -7 dB at the applied bias voltage from 0.5 to -2.0 V.
Resumo:
A semiconductor optical amplifier gate based on tensile-strained quasi-bulk InGaAs is developed. At injection current of 80mA,a 3dB optical bandwidth of more than 85nm is achieved due to dominant band-filling effect.Moreover, the most important is that very low polarization dependence of gain (<0. 7dB),fiber-to-fiber lossless operation current (70~90mA) and a high extinction ratio (>50dB) are simultaneously obtained over this wide 3dB optical bandwidth (1520~1609nm) which nearly covers the spectral region of the whole C band (1525~1565nm)and the whole L band (1570~ 1610nm). The gating time is also improved by decreasing carrier lifetime. The wideband polarization-insensitive SOA-gate is promising for use in future dense wavelength division multiplexing (DWDM) communication systems.