255 resultados para Lebesgue Constants


Relevância:

10.00% 10.00%

Publicador:

Resumo:

New parameters of nearest-neighbor EAM (1N-EAM), n-th neighbor EAM (NN-EAM), and the second-moment approximation to the tight-binding (TB-SMA) potentials are obtained by fitting experimental data at different temperatures. In comparison with the available many-body potentials, our results suggest that the 1N-EAM potential with the new parameters is the best description of atomic interactions in studying the thermal expansion of noble metals. For mechanical properties, it is suggested that the elastic constants should be calculated in the experimental zero-stress states for all three potentials. Furthermore, for NNEAM and TB-SMA potentials, the calculated results approach the experimental data as the range of the atomic interaction increases from the first-neighbor to the sixth-neighbor distance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aims. We determine branching fractions, cross sections and thermal rate constants for the dissociative recombination of CD3CDOD+ and CH3CH2OH2+ at the low relative kinetic energies encountered in the interstellar medium. Methods. The experiments were carried out by merging an ion and electron beam at the heavy ion storage ring CRYRING, Stockholm, Sweden. Results. Break-up of the CCO structure into three heavy fragments is not found for either of the ions. Instead the CCO structure is retained in 23 +/- 3% of the DR reactions of CD3CDOD+ and 7 +/- 3% in the DR of CH3CH2OH2+, whereas rupture into two heavy fragments occurs in 77 +/- 3% and 93 +/- 3% of the DR events of the respective ions. The measured cross sections were fitted between 1-200 meV yielding the following thermal rate constants and cross-section dependencies on the relative kinetic energy: sigma(E-cm[eV]) = 1.7 +/- 0.3 x 10(-15)(Ecm[eV])(-1.23 +/- 0.02) cm(2) and k(T) = 1.9 +/- 0.4 x 10(-6)(T/300)-0.73 +/- 0.02 cm(3) s(-1) for CH3CH2OH2+ as well as k(T) = 1.1 +/- 0.4 x 10(-6)(T/300)(-0.74 +/- 0.05) cm(3) s(-1) and s(Ecm[eV]) = 9.2 +/- 4 x 10(-16)(Ecm[eV])-1.24 +/- 0.05 cm(2) for CD3CDOD+

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The intestinal bacterial metabolites of ginsenosides are responsible for the main pharmacological activities of ginseng. The purpose of this study was to find whether these metabolites influence hepatic metabolic enzymes and to predict the potential for ginseng-prescription drug interactions. Utilizing the probe reaction of CYP3A activity, testosterone 6beta-hydroxylation, the effects of derivatives of 20(S)-protopanaxadiol and 20(S)-protopanaxatriol families on CYP3A activity in rat liver microsomes were assayed. Our results showed that ginsenosides from the 20(S)-protopanaxadiol and 20(S)-protopanaxatriol family including Rb-1, Rb-2, Rc, Compound-K, Re, and Rg(1), had no inhibitory effect, whereas Rg(2), 20(S)-panaxatriol and 20(S)-protopanaxatriol exhibited competitive inhibitory activity against CVP3A activity in these microsomes with the inhibition constants (K) of 86.4+/-0.8mum, 1.7+/-0.1mum, and 3.2+/-0.2 mum, respectively. This finding demonstrates that differences in their chemical structure might influence the effects of ginsenosides on CYP3A activity and that ginseng-derived products might have potential for significant ginseng-drug interactions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The interaction between standard heparin, low-molecular-weight heparin (LMWH), and granulocyte-colony stimulating factor (G-CSF) was studied by capillary zone electrophoresis. Both qualitative and quantitative characterizations of the heparin-protein binding were determined. The binding constants of the two different groups of heparins with G-CSF, calculated from the Scatchard plot by regression, were 4.805 x 10(5) m(-1) and 4.579 x 10(5) m(-1), respectively. The two binding constants measured are of the same order of magnitude at 10(5) m(-1), indicating that LMWH contains most of the functional groups bound to G-CSF by standard heparin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have analyzed the propagation rate of the chemical waves observed during the course of CO oxidation on a Ag/Pt(I 10) composite surface that were reported in our previous papers [Surf Interface Anal. 2001, 32, 179; J. Phys. Chem. B 2002, 106, 5645]. In all cases, the propagation rate v can be adequately fitted as v = v(0) + D-0/d, in which v(0) and D-0 are constants, and d is the distance between the reaction front of the chemical wave and the boundary from which the chemical wave originates. We propose that the surface species responsible for the formation of the chemical wave comes from two paths: the adsorption of molecules in the gas phase on the surface and the migration from the adjacent surface with different catalytic activity. v(0) corresponds to the contribution from the surface species due to the adsorption, and D-0/d to that of the surface species that migrates from the adjacent surface. The rate equation clearly suggests that the observed chemical wave results from the coupling between adjacent surfaces with different catalytic activities during the course of heterogeneous catalysis. These results, together with our previous reports, provide a good fundamental understanding of spillover, an important phenomenon in heterogeneous catalysis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

set of energies at different internuclear distances for the ground electronic state and two excited electronic states of NaH molecule have been calculated using valence internally contracted multireference configuration interaction(MRCI) including Davidson correction and three basis sets. Then, a potential energy curve (PEC) for each state was determined by extrapolating MRCI energies to the complete basis sets limit. Based on the PECs, accurate vibrational energy levels and rotational constants were determined. The computational PECs are were fitted to analytical potential energy functions using the Murrell-Sorbie potential function. Then, accurate spectroscopic parameters were calculated. Compared with experimental results, values obtained with the basis set extrapolation yield a potential energy curve that gives accurate vibrational energy levels, rotational constants and spectroscopic parameters for the NaH molecule. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Femtosecond time-resolved studies using fluorescence depletion spectroscopy were performed on Rhodamine 700 in acetone solution and on Oxazine 750 in acetone and formamide solutions at different temperatures. The experimental curves that include both fast and slow processes have been fitted using a biexponential function. Time constants of the fast process, which corresponds to the intramolecular vibrational redistribution (IVR) of solute molecules, range from 300 to 420 fs and increase linearly as the temperature of the environment decreases. The difference of the average vibrational energy of solute molecules in the ground state at different temperatures is a possible reason that induces this IVR time-constant temperature dependence. However, the time constants of the slow process, which corresponds to the energy transfer from vibrational hot solute molecules to the surroundings occurred on a time scale of 1-50 ps, changed dramatically at lower temperature, nonlinearly increasing with the decrease of temperature. Because of the C-H...O hydrogen-bond between acetone molecules, it is more reasonable that acetone molecules start to be associated, which can influence the energy transfer between dye molecules and acetone molecules efficiently, even at temperatures far over the freezing point.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The paper presents a theoretical study of the dynamics of the H + HCl system on the potential energy surface (PES) of Bian and Werner (Bian, W.; Werner, H. -J., J. Chem. Phys. 2000, 112, 220). A time-dependent wave packet approach was employed to calculate state-to-state reaction probabilities for the exchanged and abstraction channels. The most recent PES for the system has been used in the calculations. Reaction probabilities have also been calculated for several values of the total angular momentum J > 0. Those have then been used to estimate cross sections and rate constants for both channels. The calculated cross sections can be compared with the results of previous quasiclassical trajectory calculations and reaction dynamics experimental on the abstraction channel. In addition, the calculated rate constants are in the reasonably good agreement with experimental measurement.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Intra- and intermolecular relaxations of dye molecules are studied after the excitation to the high-lying excited states by a femtosecond laser pulse, using femtosecond time-resolved stimulated emission pumping fluorescence depletion spectroscopy (FS TR SEP FD). The biexponential decays indicate a rapid intramolecular vibrational redistribution (IVR) depopulation followed by a slower process, which was contributed by the energy transfer to the solvents and the solvation of the excited solutes. The time constants of IVR in both oxazine 750 and rhodamine 700 are at the 290-360 fs range, which are insensitive to the characters of solvents. The solvation of the excited solutes and the cooling of the hot solute molecules by collisional energy transfer to the surrounding takes place in the several picoseconds that strongly depend on the properties of solvents. The difference of Lewis basicity and states density of solvents is a possible reason to explain this solvent dependence. The more basic the solvent is, which means the more interaction between the solute and the neighboring solvent shell, the more rapid the intermolecular vibrational excess energy transfer from the solute to the surroundings and the solvation of the solutes are. The higher the states density of the solvent is, the more favorable the energy transfer between the solute and solvent molecules is.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Accurate three-dimensional time-dependent quantum wave packet calculations for the N+OH reaction on the (3)A' potential energy surface [Guadagnini, Schatz, and Walch, J. Chem. Phys. 102, 774 (1995)] have been carried out. The calculations show for the first time that the initial state-selected reaction probabilities are dominated by resonance structures, and the lifetime of the resonance is generally in the subpicosecond time scale. The calculated reaction cross sections indicate that they are a decreasing function of the translational energy, which is in agreement qualitatively with the quasiclassical trajectory calculations. The rate constants obtained from the quantum mechanical calculations are consistent with the quasiclassical trajectory results and the experimental measurements. (C) 2003 American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Equations to describe the two sites binding between proteins and ligands were deduced. According to these equations, not only the binding constants, but also the mole fraction of proteins in different forms could be obtained. Using the published data on the interaction between human serum albumin (HSA) and three kinds of porphyrin (coproporphyrin (CP), uroporphyrin I (UP) and protoporphyrin (PP)), a further study on their binding was carried out. It was concluded that there may exist two binding sites with the binding constants at the first site. proved to be the preferential one, being 6.50 x 10(5) 1.94 x 10(6) and 8.94 x 10(5). respectively. In addition. it was also demonstrated that the two binding sites of HSA with CP and UP might be of different kinds, though those of HSA and PP were of the same kind but at different positions. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A method has been developed for the determination of interactions of metal ions and protein by using microdialysis sampling technique combined with pre-column derivation and reversed-phase ion-pair liquid chromatographic (HPLC analysis. Cu(II), Zn(II) and human serum albumin (HSA) were chosen as model metal ions and protein, respectively. The mixed solutions of metal ions and HSA with different molar ratios buffered with 0.1 M Tris-HCl containing 0.1 M NaCl at pH 7.43 were sampled with a mirodialysis probe by keeping perfusion rate at 1 mul/min and the temperature at 37 degreesC. The free concentrations of metal ions in microdialysates were assayed by precolumn derivatization with meso-tetra(4-sulfophenyl)-porphyrin (TPPS4) followed ion-pair HPLC analysis. The recovery (R) of microdialysis sampling was measured in vitro under similar conditions as 65.74% for Cu(II), 70.45% for Zn(II) with R.S.D. below 3.2%. The primary binding constants and number of binding site estimated by the Scatchard plot analysis are 5.04 x 10(6) M-1 and 0.85 for Cu(II), and 9.87 x 10(6) M-1 and 1.10 for Zn(II), respectively. The competition of Cu(II) and Zn(II) at the second binding site on HSA was investigated, and it was observed that there is a second site on HSA to bind Cu(II) and Zn(II), the affinity of Cu(II) is stronger than that of Zn(II) to this second site of HSA. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

By using the home-made femtosecond laser system and the time-of-flight mass spectrometer, the decay dynamics of excited carbon disulfide (CS2) and ammonia (NH3) are investigated in real time by pump-probe multiphoton ionization detection. The estimated lifetime constant of the NH3 (A) over tilde (1)A(2)' state (51+/-4 fs) agreed quite well with the literature report. For the first time, the decay lifetime constants of the NH3 (E) over tilde'(1)A(1)' state (937+/-93 fs), the CS2 (a) over tilde (3)A(2) state (153+/-10 fs), and the CS2 Rydberg state [(3)/(2)]6ssigma(g) ((3)Pi(g)) (948+/-23 fs) are obtained.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Capillary zone electrophoresis (CZE) and affinity capillary electrophoresis (ACE) were applied to study the interaction between netropsin and a 14mer double-stranded DNA (dsDNA). The use of a polyacrylamide coated capillary can suppress the electroosmotic flow (EOF) and the adsorption of DNA onto the wall. Better analysis of the DNA was achieved in a coated capillary upon Tris-acetate. In CZE, the peak width broadened due to the affinity interaction between dsDNA and netropsin. In ACE, o-toluic acid, a negatively charged molecule was used as the indicator to monitor the changes of EOF when netropsin was added to the running buffer. The 14mer dsDNA showed different mobilities upon various concentrations of netropsin due to the affinity interaction between the dsDNA and netropsin. The binding constants of this interaction were (1.07 +/- 0.10) . 10(5) M-1 calculated from CZE and (4.75 +/- 0.30) . 10(4) M-1 from ACE using a Scatchard plot. The binding stoichiometry was 1:1 calculated from CZE which was superior to ACE in this study. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The sorption on humic acid (HA) of metals from an aqueous solution containing Hg(II). Fe(III), Pb, Cu, Al, Ni, Cr(III), Cd, Zn, Co and Mn, was investigated with special emphasis on effects of pH, metal concentration and HA concentration. The sorption efficiency tended to increase with rise in pH, decrease in metal concentration and increase in HA concentration of the equilibrating solution. At pH 2.4. the order of sorption was: Hg Fe Pb Cu=Al Ni Cr=Zn=Cd=Co=Mn. At pH 3.7. the order was: Hg and Fe were always most readily removed, while Co and Mn were sorbed least readily. There were indications of competition for active sites (CO2H and phenolic OH groups) on the HA between the different metals. We were unable to find correlations between the affinities of the eleven metals to sorb on HA and their atomic weights, atomic numbers, valencies, and crystal and hydrated ionic radii. The sorption of the eleven metals on the HA could be described by the equation Full-size image (1K), where Y = % metal removed by HA; X = mgHA; and A and B are empirical constants