269 resultados para LANTHANIDE ORTHOPHOSPHATE NANOWIRES
Resumo:
Plant extracellular calmodulin (CaM) has been purified from cauliflower and identified with NAD kinase(NADK) activation and inhibition effect of CaM antagonist W7, Tb-3.1 fluorescence titration showed that extracellular CaM contained four metal-binding sites, The excitation spectrum and emission specturm indicated that extracellular CaM contained one tyrosine residue which could transfer energy to bound Tb3+. Based on Forster type nonradiative energy transfer theory, the distances of Tyr-->sites III, IV have been determined, these are 1. 104 nm(Tyr --> III, site) and 1. 056 nm(Tyr --> N, site). By studing the effect of CaM antagonist W7 and CaM antibody on Tb3+-sensitized fluorescence, it was found that the binding sites of W7 and antibody were located on the c-terminal part of plant extracellular CaM which contains domain III and domain IV.
Resumo:
Communication: Nanostructural hybrid organic-inorganic lanthanide complex films were prepared in situ by use of a novel sol-gel precursor containing pendant triethoxy-silyl and carboxyl groups (see Figure). The resulting transparent and crack-free films gave rise to strong red or green emission, even at low lanthanide ion concentration. Phase separation and lanthanide ion aggregation were controlled at the nanoscale.
Resumo:
The reaction of NdCl3 with 2 equiv. of Na-(BuC5H4)-C-t in THF(tetrahydrofuran) gives blue crystals [((BUC5H4)-C-t)(2)NdCl](2), C36H52Cl2Nd2(M-r = 844.11) Which crystallizes in the triclinic system with space group
. The crystal data are a=11.978 (1), b=12.671(4), c=12.706(2)Angstrom, alpha=105.47(2), beta=99.38(1)? gamma=93.15 (2)degrees, V=1825 (3) Angstrom(3), Z = 2 , D-c = 1.53g/cm(3), F(000) = 450 , T = 298K , lambda(MoK alpha) = 0.71069 Angstrom, , mu = 14.97cm(-1). Final R = 0.0390, R-w = 0.0376 for 4329 reflections with I greater than or equal to 3 sigma(I-o). The molecule has a dimer structure with two certrosymmetrical chlorine bridges. The structural trend of these analogous complexes is discussed.
Resumo:
The solution structures of diamagnetic lanthanide (III) complexes of DTPA-BIN (Ln = La, Y, Lu, Sc) have been investigated by H-1 NMR, C-13 NMR and 2D NMR. For each complex, two or more species of asymmetric conformations with little distinction were identified at room temperature. And their solution structures vary with the radius of the central metals. NMR spectra support the hypothesis that Sc3+ with smaller radius formed an eight-coordinated structure with DTPA-BIN, La3+ with larger radius formed nine- or ten-coordinated structures with DTPA-BIN, and Y (DTPA-BIN) and Lu (DTPA-BIN) had nine-coordinated solution structures. The solution structure of Gd (DTPA-BIN) was obtained from the similarity of radius between Gd3+ and Y3+, which is a nine-coordinated structure formed by three nitrogens, three acetate oxygens, two acetyl oxygens, one water molecule and a gadolinium(III) cation.
Resumo:
Binary complexes of europium and terbium with N-propyl-4-carboxyphthalimide (NP) were prepared and characterized. The luminescence behaviors of the lanthanide complexes as well as their doped silica-based composites were investigated by fluorescence spectra. The results indicated that the lanthanide complexes showed fewer emission lines and slightly lower intensities in silica matrix than that of corresponding pure complexes. The lifetimes of the lanthanide complexes became longer when they were incorporated in silica matrix. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Five Ln(2)SrMCuO(6.5) oxides (M = Co, Ln = Y and Ho; M = Fe, Ln = Y, Ho, and Dy) were synthesized, and their crystal structures, IR spectra, and physical properties were studied. They have almost the same structure and crystallize in orthorhombic systems. Below room temperature, Y2SrFeCuO6.5, a known layered oxide, shows antiferromagnetic behavior, but the four new oxides are paramagnetic. Y2SrFeCuO6.5 fits the Curie-Weiss law in the temperature range 300-100 K, but Y2SrCoCuO6.5 shows complex magnetic behavior because of the disproportion of some Co+3 to Co+2 and Co+4 The five oxides are all p-type semiconductors in the measured temperature range and have large electrical resistivities at room temperature.
Resumo:
The efficient cleavage of plasmid DNA ( pCAT) by binuclear lanthanide complexes was investigated. At 37 degrees C and neutral pH, both Ho23+L and Er23+L promoted 100% conversion of supercoiled plasmid to the nicked circular form and linear form in 1 h. The corresponding saturation kinetics curve of cleavage of pCAT plasmid by binuclear lanthanide complexes showed the expected increase with catalyst concentration. (C) 1999 Elsevier Science S.A. All rights reserved.
Resumo:
The cleavage of adenosine-5'-monophosphate (5'-AMP) and guanosine-5'-monophosphate (S-GMP) by Ce4+ and lanthanide complex of 2-carboxyethylgermanium sesquioxide (Ge-132) in acidic and near neutral conditions was investigated by NMR, HPLC and measuring the liberated inorganic phosphate at 37 degrees C and 50 degrees C, The results showed that 5'-GMP and 5'-AMP was converted to guanine (G), 5'-monophosphate (depurination of 5'-GMP), ribose (depurination and dephosphorylation of 5'-GMP), phosphate and adenine (A), 5'-monophosphate (depurination of 5'-AMP), ribose (depurination and dephosphorylation of 5'-AMP), phosphate respectively by Ce4+. In presence of lanthanide complexes, 5'-GMP and 5'-AMP were converted to guanosine (Guo) and phosphate and adenosine (Ado) and phosphate respectively. The mechanism of cleaving 5'-GMP and 5'-AMP is hydrolytic scission.
Resumo:
The present work revealed that the praseodymium( II ) complex of 2-carboxyethylgermanium sesquioxide (Ge-132) promotes the hydrolysis of the phosphodiester linkages of 3',5'-cyclic adenosine monophosphate (cAMP), 3' , 5'-cyclic deoxyadenosine monophosphate (dcAMP), 5'-adenosine monophosphate(5'-AMP) and 5'-deoxyadenosine monophosphate (5'-dAMP) under mild conditions. Both cAMP and dcAMP were hydrolyzed site-specifically, yielding predominantly 3'-monophosphates, the main products of the cleavage of 5'-AMP and 5'-dAMP included adenosine (Ado). deoxyadenosine (dAdo) and free phosphates respectively. A hydrolytic mechanism was proposed for cAMP, dcAMP, 5'-AMP and 5'-dAMP.
Resumo:
Four novel polymeric lanthanide(III) complexes of two new double betaine derivatives have been synthesized and structurally determined. In [{La-2(L-1)(2)(H2O)(9)}(n)]Cl-6n. 2nH(2)O (1) and [{Tb(L-1)(H2O)(4)}(n)]Cl-3n. nH(2)O (2) (L-1 =4,4'-trimethylenedipyridinio-N,N'-diacetate), the lanthanide(III) ions form a two-dimensional layer in which each pair of lanthanide(III) ions is bridged by two syn-anti mu-carboxylato-O,O' groups. Adjacent layers are cross-linked through hydrogen bonds among aqua ligands, lattice water molecules and chloride ions, to form a three-dimensional network. Isomorphous [{Ln(L-1)(H2O)(4)}(n)]Cl-3n. 5nH(2)O (Ln=La, 3; Ln=Tb, 4; L-2=1,3 bis(pyridinio-4-carboxylato)-propane) each contain a centrosymmetric paddle-wheel-like dimeric unit in which each pair of adjacent metal atoms is bridged by four syn-syn mu-carboxylato-O,O' groups that are oriented nearly perpendicular to each other about the metal-metal axis. Neighboring dimeric subunits are bridged by a pair of flexible LL ligands into a polymeric chain. Adjacent chains are inter-linked by hydrogen bonds among aqua ligands, lattice water molecules and chloride ions into a three-dimensional network. (C) 1999 Elsevier Science Ltd. All rights reserved.
Resumo:
A novel europium(III) coordination polymer with a new double betaine derivative, {[Eu(L')(NO3)(H2O)(3)](NO3)(2). 3.5H(2)O}(n) (L-1 = 1,3-bis(pyridinio-4-carboxylato)-propane) has been synthesized and its structure determined. Its luminescence properties have also been studied. The title metal carboxylate coordination polymer contains centrosymmetric dimeric units in which each pair of metal ions is linked by a pair of syn-anti carboxylato-O,O' groups, and each pair of such dimeric units is bridged by the backbones of L-1 ligands to form infinite double chains in the b direction. These metal carboxylate chains are further cross-linked by hydrogen bonds among both coordinated and discrete nitrate anions, aqua ligands and lattice water molecules to form a three-dimensional network. Luminescent data show that the L-1 ligand is a good energy donor and the complex has a relatively long luminescent lifetime.
Resumo:
Four new polymeric lanthanide(III) complexes of nicotinic acid N-oxide and isonicotinic acid N-oxide have been synthesized and structurally determined. In the isomorphous compounds [(Ln(L-1)(3) (H2O)(2))(n)]. 4nH(2)O(HL1 = nicotinic acid N-oxide; Ln = Eu, 1; Ln = Er, 2) the lanthanide(III) ions form infinite double chains along the b direction through the coordination of bridging carboxylate and N-oxide groups. The chains are cross-linked through hydrogen bonds between aqua ligands and uncoordinated N-oxide groups and between aqua ligands and lattice water molecules, to form a three-dimensional network. [(Eu(L-2)(2)-(H2O)(4))(n)](NO3)(n). nH(2)O (HL2 = isonicotinic acid N-oxide, 3) has a polymeric structure in which the europium (III) ions are connected into infinite chains by pairs of syn-syn carboxylate groups. Adjacent chains are interlinked by hydrogen bonds between aqua ligands and N-oxide groups to form a layer parallel to the (100) plane, and such layers are connected by hydrogen bonds between nitrate anions and aqua ligands, and between oxide groups and lattice water molecules, into a three-dimensional network. In [(Er-2(L-2)(4)(H2O)(10))](NO3)(2). H2O, 4, dinuclear units are inter-linked into a three-dimensional network through hydrogen bonding between aqua ligands and N-oxide groups of both bidentate bridging and unidentate L-2 ligands. Factors affecting the formation of coordination chains and dinuclear units are discussed. Luminescence properties of 1 and 3 have also been studied. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
Lutetium(III) and lanthanum(III) complexes of 2-carboxyethylgermanium sesquioxide (Ge-132) can hydrolyze the phosphodiester linkage of 3',5'-cyclic adenosine monophosphate (cAMP), 3',5'-cyclic deoxyadenosine monophosphate (dcAMP) and 2',3'-cyclic adenosine monophosphate (2',3'-cAMP). Both cAMP and dcAMP are hydrolyzed with high selectivity, yielding predominantly 3'-monophosphates. 2',3'-cAMP is converted to 3'-AMP and 2'-AMP, the ratio of 3'-AMP to 2'-AMP produced being 1.4.
Resumo:
The structure of phenylalanine transfer ribonucleic acid (tRNA(Phe)) in solution was explored by H-1 NMR spectroscopy to evaluate the effect of lanthanide ion on the structural and conformational change. It was found that La3+ ions possess specific effects on the imino proton region of the H-1 NMR spectra for yeast tRNA(Phe). The dependence of the imino proton spectra of yeast tRNA(Phe) as a function of La3+ concentration was examined, and the results suggest that the tertiary base pair G(15). C-48, which is located in the terminal in the augmented dihydrouridine helix (D-helix), was markedly affected by La3+ (shifted to downfield by as much as 0.35). Base pair U-8. A(14) in yeast tRNA(Phe), which are stacked on G(15). C-48, was also affected by added La3+ when 1 similar to 2 Mg2+ were also present. Another imino proton that may be affected by La3+ in yeast tRNA(Phe) is that of the tertiary base pair G(19). C-56. The assignment of this resonance in yeast tRNA(Phe) is tentative since it is located in the region of highly overlapping resonances beween 12.6 and 12.2. This base pair helps to anchor the D-loop to the T Psi C loop. The binding of La3+ caused conformational change of tRNA, which is responsible for shifts to upfield or downfield in H-1 NMR spectra.