264 resultados para Femtosecond spectroscopy
Resumo:
Blue frequency-upconversion fluorescence emission has been observed in Ce3+-doped Gd2SiO5 single crystals, pumped with 120-fs 800 nm IR laser pulses. The observed fluorescence emission peaks at about 440nm is due to 5d -> 4f transition of Ce3+ ions. The intensity dependence of the blue fluorescence emission on the IR excitation laser power obeys the cubic law, demonstrating three-photon absorption process. Analysis suggested that three-photon simultaneous absorption induced population inversion should be the predominant frequency upconversion mechanism. (c) 2006 Optical Society of America.
Three-photon-excited upconversion luminescence of Ce3+: YAP crystal by femtosecond laser irradiation
Resumo:
Infrared to ultraviolet and visible upconversion luminescence was demonstrated in trivalent cerium doped YAlO3 crystal (Ce3+: YAP) under focused infrared femtosecond laser irradiation. The fluorescence spectra show that the upconverted luminescence comes from the 5d-4f transitions of trivalent cerium ions. The dependence of luminescence intensity of trivalent cerium on infrared pumping power reveals that the conversion of infrared radiation is dominated by three-photon excitation process. It is suggested that the simultaneous absorption of three infrared photons pumps the Ce3+ ion into upper 5d level, which quickly nonradiatively relax to lowest 5d level. Thereafter, the ions radiatively return to the ground states, leading to the characteristic emission of Ce3+. (c) 2005 Optical Society of America.
Resumo:
We report on an optical interference method to fabricate arrayed holes on metal nickel foil and aluminum film deposited on glass substrate by means of five-beam interference of femtosecond laser pulses. Optical microscope and scanning electron microscope observations revealed that arrayed holes of micrometre-order were fabricated on both metal foil and metal film. The present technique allows one-step, large-area, micrometric processing of metal materials for potential industrial applications.
Resumo:
We report on an optical interference method for transferring periodic microstructures of metal film from a supporting substrate to a receiving substrate by means of five-beam interference of femtosecond laser pulses. Scanning electron microscopy and optical microscopy revealed microstructures with micrometer-order were transferred to the receiving substrate. In the meanwhile, a negative copy of the transferred structures was induced in the metal film on the supporting substrate. The diffraction characteristics of the transferred structures were also evaluated. The present technique allows one-step realization of functional optoelectronic devices. (C) 2005 Optical Society of America.
Resumo:
For the first time, the effect of Na+ on crystal structure, valence state of Yb ions, spectroscopic properties of YbF3-doped CaF2 system was systematically studied. Na+ can greatly suppress the deoxidization of Yb3+ to Yb2+. Absorption and emission spectra showed codoping Na+ with different Na:Yb ratios can modulate the spectroscopy and photoluminescence properties of Yb3+ ions in CaF2 lattice in a large scope. The emission lifetime and quantum efficiency of Yb3+ in CaF2 were greatly enhanced by the codopant of Na+. The potential laser performances of the new Yb, Na-codoped CaF2 crystals were predicted. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Periodic nanostructures along the polarization direction of light are observed inside silica glasses and tellurium dioxide single crystal after irradiation by a focused single femtosecond laser beam. Backscattering electron images of the irradiated spot inside silica glass reveal a periodic structure of stripe-like regions of similar to 20 nm width with a low oxygen concentration. In the case of the tellurium dioxide single crystal, secondary electron images within the focal spot show the formation of a periodic structure of voids with 30 nm width. Oxygen defects in a silica glass and voids in a tellurium dioxide single crystal are aligned perpendicular to the laser polarization direction. These are the smallest nanostructures below the diffraction limit of light, which are formed inside transparent materials. The phenomenon is interpreted in terms of interference between the incident light field and the electric field of electron plasma wave generated in the bulk of material.
Resumo:
We have observed periodically aligned nanovoid structures inside a conventional borosilicate glass induced by a single femtosecond (fs) laser beam for the first time, to our knowledge. The spherical voids of nanosized diameter were aligned spontaneously with a period along the propagation direction of the laser beam. The period, the number of voids, and the whole length of the aligned void structure were controlled by changing the laser power, the pulse number, and the position of the focal point.
Resumo:
We obtain Au and Ag nanoparticles precipitated in glasses by irradiation of focused femtosecond pulses, and investigate the nonlinear absorptions of the glasses by using Z-scan technique with ns pulses at 532 nm. We observe the saturable absorption behavior for An nanoparticles precipitated glasses and the reverse saturable ones for Ag ones. We also obtain, by fitting to the experimental results in the light of the local field effect near and away from the surface plasmon resonance, chi(m)((3)) = 4.5 x 10(-7) and 5.9 x 10(-8) esu for m the imaginary parts of the third-order susceptibilities for Au and Ag nanoparticles, respectively. The nonlinear response of Au nanoparticles in the glass samples arises mainly from the hot-electron contribution and the saturation of the interband transitions near the surface plasmon resonance, whereas that of Ag nanoparticles in the glass samples from the interband transitions. These show that the obtained glasses can be used as optoelectronic devices suiting for different demands. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
We report on photoreduction of Ag+ in aluminoborate glasses induced by irradiation of a femtosecond laser. Novel fluorescence was observed in the femtosecond laser irradiated glass when excited by a 365 nm ultraviolet lamp. Optical absorption, emission, and electron spin resonance spectra of the glass samples demonstrated that after the laser irradiation, portions of silver ions near the focused part of the laser beam inside the glass were reduced to silver atoms, which resulted in the formation of the characteristic fluorescence. The observed phenomenon may have promising applications in the fabrication of functional optical devices.
Resumo:
Femtosecond pulsed lasers have been widely used for materials microprocessing. Due to their ultrashort pulse width and ultrahigh light intensity, the process is generally characterized by the nonthermal diffusion process. We observed various induced microstructures such as refractive-index-changed structures, color center defects, microvoids and microcracks in transparent materials (e.g., glasses after the femtosecond laser irradiation), and discussed the possible applications of the microstructures in the fabrication of various micro optical devices [e.g., optical waveguides, microgratings, microlenses, fiber attenuators, and three-dimensional (3D) optical memory]. In this paper, we review our recent research developments on single femtosecond-laser-induced nanostructures. We introduce the space-selective valence state manipulation of active ions, precipitation and control of metal nanoparticles and light polarization-dependent permanent nanostructures, and discuss the mechanisms and possible applications of the observed phenomena.
Resumo:
Compact femtosecond laser operation of Yb:Gd2SiO5 (Yb:GSO) crystal was demonstrated under high-brightness diode-end-pumping. A semiconductor saturable absorption mirror was used to start passive mode-locking. Stable mode-locking could be realized near the emission bands around 1031, 1048, and 1088 nm, respectively. The mode-locked Yb: GSO laser could be tuned from one stable mode-locking band to another with adjustable pulse durations in the range 1 similar to 100 ps by slightly aligning laser cavity to allow laser oscillations at different central wavelengths. A pair of SF10 prisms was inserted into the laser cavity to compensate for the group velocity dispersion. The mode-locked pulses centered at 1031 nm were compressed to 343 fs under a typical operation situation with a maximum output power of 396 mW. (c) 2007 Optical Society of America.
Resumo:
We observed and described some phenomena, which were that when a alpha-BBO crystal was irradiated by a focused femtosecond laser beam, the temperature effect happened in a minute area of focus, then the induced beta-BBO phase was separated within the minute area in the alpha-BBO crystal. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
There are two different effects to generate group delay dispersion by multilayer thin film mirrors: chirper effect and Gires-Tournois effect. Both effects are employed to introduce desired dispersion in the designed mirror. Thus the designed mirror provides large dispersion throughout broad waveband. Such mirror can be used for dispersion compensation in Ti:sapphire femtosecond lasers. Most group delay dispersion of a 5-mm Ti:sapphire crystal can be compensated perfectly with only four bounces of the designed mirror.
Resumo:
We design and experimentally demonstrate some negative dispersion mirrors with optimized Gires-Tournois interferometers. The mirror structure is composed of 38 alternating Ta2O5 and SiO2 layers and could be regarded as two sections: high-reflectivity section consisting of a series of quarter-wavelength optical thickness stacks and negative-dispersion section consisting of only 13 layers. The designed mirrors exhibit the expected performance. These mirrors were fabricated by using ion beam sputtering. By adopting such mirrors, dispersion of a mode-locked femtosecond Ti:sapphire laser has been compensated for mostly. With two series of the mirrors, 32 fs and 15 fs pulses have been obtained respectively.
Resumo:
HfO2 single layers, 800 run high-reflective (HR) coating, and 1064 ran HR coating were prepared by electron-beam evaporation. The laser-induced damage thresholds (LIDTs) and damage morphologies of these samples were investigated with single-pulse femtosecond and nanosecond lasers. It is found that the LIDT of the HfO2 single layer is higher than the HfO2-SiO2 HR coating in the femtosecond regime, while the situation is opposite in the nanosecond regime. Different damage mechanisms are applied to study this phenomenon. Damage morphologies of all samples due to different laser irradiations are displayed. (c) 2007 Optical Society of America.