181 resultados para Duodenal switch


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The crossover between two regimes has been observed in the vertical electric transport of weakly coupled GaAs/AlAs superlattices (SLs). At fixed d.c. bias, the SLs can be triggered by illumination to switch from a regime of temporal current oscillation to the formation of a stable electric field domain. The conversion can be reversed by raising the sample temperature to about 200 K. An effective carrier injection model is proposed to explain the conversion processes, taking into account the contact resistance originating from DX centres in the n(+)-Al0.5Ga0.5As contact layers which is sensitive to light illumination and temperature. In addition, quasiperiodic oscillations have been observed at a particular d.c. bias voltage.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A fully-differential switched-capacitor sample-and-hold (S/H) circuit used in a 10-bit 50-MS/s pipeline analog-to-digital converter (ADC) was designed and fabricated using a 0.35-μm CMOS process. Capacitor fliparound architecture was used in the S/H circuit to lower the power consumption. In addition, a gain-boosted operational transconductance amplifier (OTA) was designed with a DC gain of 94 dB and a unit gain bandwidth of 460 MHz at a phase margin of 63 degree, which matches the S/H circuit. A novel double-side bootstrapped switch was used, improving the precision of the whole circuit. The measured results have shown that the S/H circuit reaches a spurious free dynamic range (SFDR) of 67 dB and a signal-to-noise ratio (SNR) of 62.1 dB for a 2.5 MHz input signal with 50 MS/s sampling rate. The 0.12 mm~2 S/H circuit operates from a 3.3 V supply and consumes 13.6 mW.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The proposed DAC consists of a unit current-cell matrix for 8MSBs and a binary-weighted array for 4LSBs, trading-off between the precision, speed, and size of the chip. In order to ensure the linearity of the DAC, a double Centro symmetric current matrix is designed by the Q2 random walk strategy. To achieve better dynamic performance, a latch is added in front of the current switch to change the input signal, such as its optimal cross-point and voltage level. For a 12bit resolution,the converter reaches an update rate of 300MHz.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A rearrangeable nonblocking thermo-optic 4×4 switching matrix,which consists of five 2×2 multimode interference-based Mach-Zehnder interferometer(MMI-MZI) switch elements,is designed and fabricated.The minimum and maximum excess loss for the matrix are 6.6 and 10.4dB,respectively.The crosstalk in the matrix is measured to be between -12 and -19.8dB.The switching speed of the matrix is less than 30μs.The power consumption for the single switch element is about 330mW.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Integrated multimode interference (MMI) coupler based on silicon-on-insulator(SOI) has been becoming a kind of more and more attractive device in optical systems. SiO2thin cladding layers (<1.0 μm) can be usedin SOI waveguide due to the large index step be-tween Si and SiO2, making them compatible with VLSI technology. The design and fabrica-tion of MMI optical couplers and optical switches in SOI technology are presented in thepa-per. We demonstrated the switching time of 2 × 2 MMI-MZI thermo-optical switch is less than 20 μs:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

MMI (multimode interference) coupler, modulator and switch based on SOI (silicon- on-insulator) have been become more and more attractive in optical systems since they show important performances. SiO2 thin cladding layers (<1.0mum) can be used in SOI waveguide due to the large index step between Si and SiO2, making them compatible with the VLSI technology. The design and fabrication of multimode interference (MMI) optical coupler, modulator and switche in SOI technology are presented in the paper. The results demonstrated that the modulator has an extinction ratio of -11.0dB and excess loss of -2.5dB, while the optical switch has a crosstalk of -12.5dB and responding time of less than 20 mus.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A semi-insulating GaAs single crystal ingot was grown in a recoverable satellite, within a specially designed pyrolytic boron nitride crucible, in a power-travelling furnace under microgravity. The crystal was characterized systematically and was used in fabricating low noise field effect transistors and analogue switch integrated circuits by the direct ion-implantation technique. All key electrical properties of these transistors and integrated circuits have surpassed those made from conventional earth-grown gallium arsenide. This result shows that device-grade space-grown semiconducting single. crystal has surpassed the best. terrestrial counterparts. Studies on the correlation between SI-GaAs wafers and the electronic devices and integrated circuits indicate that the characteristics of a compound semiconductor single crystal depends fundamentally on its stoichiometry.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Integrated multimode interference coupler based on silicon-on-insulator has been become a kind of more and more attractive device in optical systems. Thin cladding layers (<1.0mum) can be used in SOI waveguide due to the large index step between Si and SiO2, making them compatible with the VLSI technology. Here we demonstrate the design and fabrication of multimode interference (MMI) optical couplers and optical switches in SOI technology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The development of optical network demands integrated arid multiple functionality modules to lowing cost and acquire highly reliability. Among the various contender materials to be photonic integrated circuits platform, silicon exhibits dominant characteristics and is the most promising platform materials. The paper compares the characteristics of some candidate materials with silicon and reviews recent progress in silicon based photonic integration technology. Tile challenges to silicon for optical integration for optical networking application arc also indicated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper a new half-flash architecture for high speed video ADC is presented. Based on a high speed single-way analog switch circuit, this architecture effectively reduces the number of elements. At the same lime no sacrifice of speed is needed compared with the normal half-flash structure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We designed and fabricated GaAs OMIST (Optical-controlled Metal-Insulator-Semiconductor Thyristor) device. Using oxidation of A1As layer that is grown by MBE form the Ultra-Thin semi-Insulating layer (UTI) of the GAAS OMIST. The accurate control and formation of high quality semi-insulating layer (AlxOy) are the key processes for fabricating GaAs OMIST. The device exhibits a current-controlled negative resistance region in its I-V characteristics. When illuminated, the major effect of optical excitation is the reduction of the switching voltage. If the GaAs OMIST device is biased at a voltage below its dark switching voltage V-s, sufficient incident light can switch OMIST from high impedance low current"off"state to low impedance high current "on"state. The absorbing material of OMIST is GaAs, so if the wavelength of incident light within 600 similar to 850nm can be detected effectively. It is suitable to be used as photodetector for digital optical data process. The other attractive features of GaAs OMIST device include suitable conducted current, switching voltage and power levels for OEIC, high switch speed and high sensitivity to light or current injection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Low noise field effect transistors and analogue switch integrated circuits (ICs) have been fabricated in semi-insulating gallium arsenide (SI-GaAs) wafers grown in space by direct ion-implantation. The electrical behaviors of the devices and the ICs have surpassed those fabricated in the terrestrially grown SI-GaAs wafers. The highest gain and the lowest noise of the transistors made from space-grown SI-GaAs wafers are 22.8 dB and 0.78 dB, respectively. The threshold back-gating voltage of the ICs made from space-grown SI-GaAs wafers is better than 8.5 V The con-elation between the characterizations of materials and devices is studied systematically. (C) 2002 COSPAR. Published by Elsevier Science Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

细胞生物学研究的一个重要方向是动态地控制细胞在基底上的黏附。最近,随着表面化学的研究深入,尤其是对烷基硫醇在金基底上形成自组装单层膜(self-assembled monolayers, SAMs)这一体系的研究,使得人们能在分子水平的表面上控制细胞黏附。精氨酸-甘氨酸-天冬氨酸(arginine-glycine-aspartate, RGD)序列首先是从细胞外基质蛋白中分离出来的,能够识别并非共价结合细胞膜表面的整合素受体,从而促进细胞黏附。以前的一些工作已经证实,将含有RGD的肽链连接到SAMs表面之后,能够生物特异性地黏附动物细胞。已有的手段比如光照、电压、加热、微电极、微流控以及表面纳米形貌的梯度变化,都不能真正实现可逆地控制细胞黏附,原因是这些方法所用的化学有限;这些方法也不能得到完全抗拒细胞黏附的表面,原因是这些方法产生的表面缺陷等不完整。用两种不同波长的光(紫外光和可见光)照射偶氮苯,偶氮苯会发生可逆的光致异构变化,因此,偶氮苯的光致异构性质可以用来可逆地控制细胞在表面黏附。运用含有偶氮苯的混合SAMs,偶氮苯的末端连接GRGDS肽,混合SAMs中是以末端为六聚乙二醇的硫醇为背景,该SAMs修饰而成的表面能够黏附或者抗拒细胞黏附,其表面黏附性质取决于SAMs中偶氮苯的构象。该方法提供了一种在分子水平的表面上我们所了解到的唯一能可逆控制细胞黏附的方法,该方法需要用到的光源来自于标准荧光显微镜所配置的汞灯。 为了实现在金基底表面可逆的控制细胞黏附,我们合成了如下三个化合物: 由于化合物1的溶解性很差,几乎在所有溶剂里都不溶,所以不能直接用化合物1制备SAMs;化合物2能高效地抗拒细胞的黏附;化合物3的偶氮苯末端是活化酯,能够连接GRGDS肽,从而控制细胞黏附。 将化合物2和化合物3以一定的比例均匀混合在金基底表面形成SAMs,然后将GRGDS肽连接到偶氮苯(反式)的末端(通过GRGDS肽的甘氨酸上的伯胺基与偶氮苯末端的活化酯反应),从而得到细胞黏附的表面。用紫外光照射该细胞黏附表面5-10小时,随着偶氮苯的构象由反式变为顺式,偶氮苯末端的GRGDS肽淹没在化合物2的六聚乙二醇中,得到抗拒细胞黏附的惰性表面。再用可见光照射该惰性表面1个小时,随着偶氮苯的构象由顺式变为反式,原先埋没在六聚乙二醇中的GRGDS肽伸展至单层膜的末端,又得到了细胞黏附的表面。因此,该表面能完全可逆地控制细胞在金表面黏附。 An important area in cell biology is the dynamic control of cell adhesion on substrates. Recent advancements in surface chemistry, in particular, self-assembled monolayers (SAMs) of alkanethiols on gold substrates, have permitted unprecedented control of cell adhesion via molecularly defined surfaces. The tri-peptide sequence arginine-glycine-aspartate (RGD), initially isolated from the extracellular matrix (ECM) proteins, can recognize and non-covalently bind with integrin receptors on cell membranes to promote cell adhesion. Some previous work has demonstrated that RGD peptide grafted on SAMs can allow bio-specific adhesion of mammalian cells that mimic natural adhesion. Existing technologies such as light, voltage, heat, microelectrodes, microfluidic systems and surface gradient of nanotopography, either cannot realize fully reversible control of cell adhesion, due to the limitation in the chemistry used, or cannot yield a surface completely resistant against cell adhesion, due to the imperfection of surfaces. Azobenzenes undergo reversible photo-induced isomerization rapidly at two different wavelengths of light (UV and visible light), it therefore potentially allows the reversible control of cell adhesion on a surface. By using a mixed SAMs presenting azobenzene groups terminated in GRGDS peptides in a background of hexa(ethylene glycol) groups, the surface can either accommodate or resist cell adhesion depending on the conformation of the azobenzene embedded in SAMs. This method provides the only means we know to control cell adhesion reversibly on a molecularly well-defined surface by using light generated by a mercury lamp equipped on standard fluorescence microscopes. To realize the reversible control of cell adhesion on gold surface, we synthesized three kinds of compounds as following, We found that it was difficult to obtain SAMs directly from compound 1 because of its poor solubility in almost all kinds of solvents; compound 2 can resist cell adhesion efficiently; compound 3 presents an azobenzene terminated with NHS-activated ester, which can couple with a GRGDS peptide to control cell adhesion. After coating a gold surface with compound 2 and 3 in appropriate ratios to form a SAM followed by coupling the GRGDS peptides with NHS-activated esters at the end of azobenzene (E configuration) resulted in a cell-adhesive SAM. Irradiating this cell-adhesive SAM with UV light for 5-10 h converted the E configuration of azobenzene into the Z form, the GRGDS peptides becoming masked in the PEG, resulting in a cell-resistant surface. These SAM could again support cell adhesion as a result of the conformational switch of azobenzene from Z to E with the irradiation of visible light for 1 h. This surface, therefore, allows completely reversible control of cell adhesion on a gold surface.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The shell effect is included in the improved isospin dependent quantum molecular dynamics model in which the shell correction energy of the system is calculated by using the deformed two-center shell model. A switch function is introduced to connect the shell correction energy of the projectile and the target with that of the compound nucleus during the dynamical fusion process. It is found that the calculated capture cross sections reproduce the experimental data quantitatively at the energy near the Coulomb barrier. The capture cross sections for reaction (35) (80) Br + (82) (208) Pb -> (117) (288) X are also calculated and discussed.